【摘 要】
:
In this article,a weak Galerkin finite element method for the Laplace equation using the harmonic polynomial space is proposed and analyzed.The idea of using the Pk-harmonic polynomial space instead of the full polynomial space Pk is to use a much smaller
【机 构】
:
Department of Mathematics and Statistics,University of Arkansas at Little Rock,Little Rock,AR 72204,
论文部分内容阅读
In this article,a weak Galerkin finite element method for the Laplace equation using the harmonic polynomial space is proposed and analyzed.The idea of using the Pk-harmonic polynomial space instead of the full polynomial space Pk is to use a much smaller number of basis functions to achieve the same accuracy when k≥2.The optimal rate of convergence is derived in both H1 and L2 norms.Numerical experiments have been conducted to verify the theoretical error estimates.In addition,numerical comparisons of using the P2-harmonic polynomial space and using the standard P2 polynomial space are presented.
其他文献
在加快建设创新型国家、坚定文化自信、激发全民族文化创新创造力的宏阔背景下,在实现高等教育内涵式发展的教育方针的指引下,以文化产品与资源为基础,对艺术类文创成果孵化进行深入研究,研究与探索孵化的多种路径,逐步走向文化消费与输出,加快创新创业人才培养、促进文化产业发展,践行文化自觉与文化自信的时代担当.
The aim of this paper is to develop a fully discrete local discontinuous Galerkin method to solve a class of variable-order fractional diffusion problems.The scheme is discretized by a weighted-shifted Grüinwald formula in the temporal discretization and
The purpose of this paper is to study the oscillation of second-order half-linear neutral dif-ferential equations with advanced argument of the form(r(t)((y(t)+p(t)y(τ(t)))\')α)\'+q(t)yα(σ(t))=0,t≥t0,when ∫∞r-a/1(s)ds<∞.We obtain sufficient conditions
Regularization methods have been substantially applied in image restoration due to the ill-posedness of the image restoration problem.Different assumptions or priors on images are applied in the construction of image regularization methods.In recent years
在人类对气候的漫长认知过程中,因涉及学科之广、贡献人物之多、关键事件之复杂导致后人试图完整准确地把握其脉络走向的努力极为困难.这就使得梳理古今中外几千年以来气候学的发展进程变得尤为重要,也成为气候学学科建设不可或缺的重要组成部分.本文试图在前人大量研究成果基础上,回顾气候学发展历程中的重要事件和关键人物,以时间脉络为主线,勾画出人类认识气候的基本轮廓,并以此为基础探讨其对当代气候学发展的启示.
The aim of this paper is to obtain the numerical solutions of fractional Volterra integro-differential equations by the Jacobi spectral collocation method using the Jacobi-Gauss col-location points.We convert the fractional order integro-differential equa
In the present paper,we derive the asymptotic expansion formula for the trapezoidal approximation of the fractional integral.We use the expansion formula to obtain approxi-mations for the fractional integral of orders α,1+α,2+α,3+α and 4+α.The approxi-mat
本文使用CMORPH卫星反演降水资料、日本再分析资料JRA-55和FY-2E卫星的云顶亮温(TBB)资料等,选取了登陆前后季风强度差异很大、路径形似且登陆后均在湘南地区引发强降水的0604号强热带风暴“碧利斯”和0708号台风“圣帕”,从对流发展的不稳定能量来源、抬升机制和环境风垂直切变方面进行对比,研究季风气流如何影响台风降水强度和分布.分析表明,在下垫面和地形基本一致的情况下,两台风导致强降水的主要成因不同,主要体现在引发对流并使对流维持的主要影响因子不同.与强季风背景密切相关的低层强烈辐合抬升和对流
祁连山是青藏高原东北部重要的生态屏障和冰川与水源涵养生态功能区,是黄河流域重要水源产流地,但针对该地区的云和降水过程研究很少.本文利用祁连山地区11个Parsivel2雨滴谱仪的观测数据,研究了祁连山地区春季一次层状云降水过程的雨滴谱分布及地形影响特征.此次降水过程主要受短波槽影响,降水时空差异较大.雨滴谱观测数据表明,此次降水过程的雨滴等效直径(Dm)较小,雨滴谱数浓度(NT)与Dm随海拔高度升高分别呈增加和减小的趋势,低海拔站点logNw(Nw为雨滴谱截断参数)和Dm分布有着明显的层状云降水特征,而整
基于深度学习的高分辨率光学影像云检测过程中,云和云阴影及其边缘细节丢失较为严重,主要原因在于不同尺度空间语义信息特征融合存在不足。针对该问题,本文构建一种基于深度学习的多尺度特征融合网络(Multi-scale Feature Fusion Network, MFFN)的云和云阴影检测方法,该算法结合防止网络退化的残差神经网络模块(Res.block)、扩大网络感受野的多尺度卷积模块(MCM)和提