论文部分内容阅读
场景文本识别是近年来极具挑战性的任务,不同于规则的文档文本图像,场景图像中的文本具有形态多变和弯曲等特点,识别起来很有难度。该文提出了一种轻量级的场景文本识别模型(ISTR-LW),不同于现有的场景文本识别模型具有参数量大的缺点,该模型在特征序列提取中引入了经过改变后的轻量级网络PeleeNet,不仅大幅度减少了模型的参数量,还加快了网络预测的速度;在循环网络层中获取标签分布时,引入了Dense Block模块,加快了网络训练的收敛速度;在获取最终识别结果时,引入了注意力机制,获得需要关注的重点区域