论文部分内容阅读
选取北盘江镇与花江镇作为研究区,利用谷歌高精度遥感影像,结合分区分层分级思想,基于深度学习与传统约束方法对研究区耕地进行精准提取。结果表明:1)在数量精度上,以视觉形态差异对研究区进行分区并选取不同模型训练获得的精细地块,面积约为9 867 hm~2,与实际数量基本一致,F-Measure主要分布在[0.82, 0.98]之间,受到地形和岩石裸露率的影响,石漠化严重地区耕地提取精度较低。2)在形态精度上,预测耕地与实际耕地的GIOU主要分布在[0.7, 1]之间,分割正确率>0.85,表明预测耕地边