论文部分内容阅读
基于区域的活动轮廓模型如Chan-Vese(CV)模型等以其能较好的处理图像的模糊边界和复杂拓扑结构而广泛运用于图像分割中.然而基于灰度分布均匀假设,该模型对于含灰度不一致性的目标分割结果较差.此外,纹理是周期性重复出现的细节,依靠灰度信息无法正确检测.针对这些问题,提出一种基于局部特征的自适应快速图像分割模型.一方面,利用两种区域项检测卡通部分和纹理部分的特征信息,在自适应的局部块中提取局部统计信息以克服卡通部分的灰度不一致性;另一方面,利用自适应的局部块中的纹理特征来计算背景和目标区域的Kull