论文部分内容阅读
提出一种基于深度学习的文本情感分析方法,将整个卷积神经网络的模型作为一种自动学习器,对输入词语的预表达特征进行学习,引入深度学习领域的递归自编码作为输出层情感分类器,实现语义情感信息的深度提取.设置实验对比卷积神经网络和递归自编码模型的参数,找出了实验过程的最佳参数组合,实验对比了CNN、RSC、CNN-RSC三种不同的算法.实验结果表明:基于CNN-RSC的组合优化算法在对文本情感特征的自动学习上有着较好的效果,在准确度和训练时间以及分类性能上均优于其他两种算法.