论文部分内容阅读
二维线性判别分析(2DLDA)在人脸识别已经获得巨大成功,然而用于单训练样本人脸识别问题方法失效,因为每类需要多个样本计算类内散度.对此提出了一种新的基于图像矩阵的分块二维主成分分析+二维线性判别分析(Block 2DPCA+2DLDA)的单训练样本人脸识别算法.首先将图像进行分块,并按其位置将子图像分成多个样本集,在每个样本集上应用2DPCA算法,进行第一次识别.其次将第一次识别出的已知类别的测试样本并入原单训练样本集中,原单训练样本集成为多训练样本集.最后在新的训练样本集和测试集上应用2DLDA