论文部分内容阅读
研究了远场来流作用下二元系中的枝晶生长.当Schmidt数很大时,应用渐近分析方法得到枝晶稳态生长的渐近解,其温度场和浓度场的首级解、一级解均为相似性解,枝晶形状为存在细微波动的旋转抛物面.远场来流的强弱影响着枝晶生长的Peclet数的大小,进而影响着枝晶的尖端半径与生长速度.当过冷度一定时,在枝晶尖端或在枝晶前沿处的温度随着流场的增大而减小,而溶质浓度随着流场的增大而增大.
When the Schmidt number is very large, the asymptotic solution of steady growth of dendrite is obtained by using the asymptotic analysis method. The first-order solution of temperature field and concentration field , The first-order solutions are similar solutions, and the dendrite shape is a rotating paraboloid with slight fluctuations.The strength of the far-field flow affects the Peclet number of dendrite growth, which in turn affects the tip radius and growth rate of dendrite When the degree of undercooling is constant, the temperature at the dendrite tip or at the dendritic front decreases with the increase of the flow field, while the solute concentration increases with the increase of the flow field.