论文部分内容阅读
Objective: To investigate the effect of a new biomaterial combining calcium citrate and recombinant human bone morphogenetic protein-2 (rhBMP-2) on bone regeneration in a bone defect rabbit model.Methods: Totally 30 male New Zealand white rabbits were randomly and equally divided into calcium citraterhBMP-2 (CC-rhBMP-2) group and rhBMP-2 only group.Two 10 mm-long and 5 mm-deep bone defects were respectively created in the left and right femoral condyles of the rabbits.Subsequently 5 pellets of calcium citrate (10 mg)combined with rhBMP-2 (2 mg) or rhBMP-2 alone were implanted into the bone defects and compressed with cotton swab.Bone granules were obtained at 2,4 and 6 weeks after procedure and received histological analysis.LSD t-test and a subsequent t-test were adopted for statistical analysis.Results: Histomorphometric analysis revealed newly formed bones,and calcium citrate has been absorbed in the treatment group.The percent of newly formed bone area in femoral condyle in control group and CC-rhBMP-2 group was respectively 31.73%±1.26% vs 48.21%±2.37% at 2 weeks; 43.40%±1.65% vs 57.32%±1.47% at 4 weeks,and 51.32%±7.80% vs 66.74%±4.05% at 6 weeks (P<0.05 for all).At 2 weeks,mature cancellous bone was observed to be already formed in the treatment group.Conclusion: From this study,it can be concluded that calcium citrate combined with rhBMP-2 signifcantly enhances bone regeneration in bone defects.This synthetic gelatin matrix stimulates formation of new bone and bone marrow in the defect areas by releasing calcium ions.