论文部分内容阅读
摘 要 血清素再摄取转运体是色胺能系统中的重要分子,主要负责血清素的转运和再摄取。通过将编码SERT的基因slc6A4敲除,可构建不同种属的SERT敲除(SERT KO或slc6A4-/-或SERT-/-)的动物模型用于研究多种相关疾病。本综述总结了SERT KO动物的病理生理改变及其作为疾病模型在相关研究中的应用。
关键词 血清素再摄取转运体 血清素 基因敲除 动物模型
中图分类号:R363.21 文献标志码:A 文章编号:1006-1533(2021)11-0052-05
Pathophysiological changes and application of serotonin transporter gene knockout animals*
WANG Enkang**, YUAN Jianye***(Institute of Digestive Diseases; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China)
ABSTRACT Serotonin reuptake transporter (SERT) is an important molecule in the serotonergic system. It is responsible for the transmission and reuptake of serotonin. By knockout (KO) of SERT gene slc6A4, animal models of SERT KO (slc6A-/-or SERT-/-) in different species have been established for the studies of a series of related diseases. This review summarizes the pathophysiological changes of SERT KO animals and the applications of them as disease models in related studies.
KEy WORDS serotonin reuptake transporter; serotonin; gene knockout; animal model
1 血清素和血清素再摄取转运体
与认知、情绪、摄食等有关的5-羟色胺(5-hydroxytryptamine,5-HT)在中枢和外周都发挥着重要作用。5-HT通过庞大的5-HT受体家族发挥作用。血清素再摄取转运体(serotonin reuptake transporter,SERT;也称5-HTT)由溶质载体家族6成员4基因(slc6A4)编码,是生理状态下5-HT唯一的高效转运体,通过将5-HT转运至细胞内灭活对组织间隙的5-HT进行再摄取[1],从而精细调控细胞外液中5-HT浓度、组织中5-HT受体表达和功能以及中缝核中不同区域5-HT能神经元的放电速率,调节5-HT神经传递、局部免疫反应和炎症,维持5-HT系统的稳态[2]。
2 SERT基因多态性
在人类中,slc6A4基因位于第17号染色体上,其转录活性是由插入/删除44个SERT关联多态区(serotonintransporter-linked polymorphic region,5-HTTLPR)多态性碱基对来调节的,该多态性区域位于转录起始位点的上游。基于5-HTTLPR多态性,slc6A4基因有16个长等位基因和14个短等位基因,其中短等位基因的转录活性较低[3]。有研究发现,青少年抑郁和自杀与短-短基因型显著相关[4]。在成年红斑狼疮患者中,拥有短等位基因的人则更容易焦虑/抑郁,且程度和短等位基因的数量呈正相关[5]。人类中这种基因多态性导致的病理生理病理改变可以被啮齿动物SERT基因缺失所模拟[6]。slc6A4-/-鼠和slc6A4+/-鼠表现出明显的短等位基因依赖性行为异常,且slc6A4-/-鼠与slc6A4+/-鼠相比有着更明显的精神行为缺陷[7]。
3 SERT基因敲除后动物的病理生理改变
1992年,Silva等[8]在《Science》上发文宣告SERT敲除(knock out, KO)小鼠的诞生。2006年,Smits团队[9]引进了N-乙基-N-亚硝基脲(N-ethyl-N-nitrosourea,ENU)驱动靶向选择诱变技术,首次成功制備出SERT KO大鼠。
虽然说SERT是正常生理条件下唯一的高效5-HT转运体,但随着研究的深入,科学家们发现一些低亲和力转运蛋白如神经元外单胺转运体(extraneuronal monoamine transporter,EMT)和有机阳离子转运体(organic cation transporter,OCT)在5-HT的转运和再摄取中也起着重要作用[10-11]。随着5-HT浓度升高,上述低亲和力转运体对5-HT的清除作用变得越来越重要[12]。进一步研究发现,SERT KO小鼠OCT3 mRNA在海马区的表达显著升高。尽管有这些代偿机制调节5-HT的浓度,SERT KO小鼠5-HT浓度仍然明显高于野生鼠5-HT的生理浓度。
增强的5-HT信号会影响机体的生理功能,比如会出现肠道神经可塑性增强、肠绒毛升高、隐窝变深、肠细胞增殖增加等[13-14]。相关行为学实验证实SERT KO大鼠表现出焦虑、抑郁样行为[15]。这些情绪变化与性别相关,雌性SERT KO鼠表现出比雄性鼠更明显的抑郁和/或焦虑样改变[16]。同样与性别相关的变化还有内脏敏感性,雌性SERT-/-大鼠相较于雄性SERT-/-大鼠有着更高的内脏敏感性,即更低的疼痛阈值[17]。中枢SERT和5-HT水平的改变影响了大鼠的射精活动,slc6A4-/-鼠表现出比野生型(wild type,WT)鼠更少的射精次数,更长的射精潜伏期,而slc6A4+/-鼠与WT鼠无差异[18]。另有研究发现,增强的5-HT信号可以促进SERT-/-小鼠全段肠黏膜的吸收和小肠段黏膜的生长,且远端小肠黏膜的生长能力最为显著[19];SERT-/-大鼠肠道动力的改变主要在结肠段,伴随结肠组织中毒蕈碱型3受体(muscarinic type 3 receptor,M3)表达的增加[20]。 较高的5-HT浓度还会导致相关受体对5-HT的超敏和脱敏[21]。前者可能与水样腹泻有关,而后者可能与短暂性的便秘有关[22]。SERT-/-小鼠突触前后5-HT1A受体都脱敏,而SERT+/-小鼠仅突触前5-HT1A脱敏[21]。SERT缺失以后,大鼠对于急性不可避免压力(inescapable stress,IS)更容易产生应激反应,但是在之后的反复IS的处理中,SERT-/-大鼠表现出了恐惧消退的表现,这可能与5-HT1A受体的脱敏有关[23-24]。SERT-/-大鼠对积极环境比较敏感,研究证实一直暴露在积极环境中的大鼠,恐惧表现可以恢复至正常水平[25]。另外有药理学研究证实,SERT-/-大鼠对提高性功能的5-HT1A受体激动剂药效不敏感是由于5-HT1A受体的脱敏引起的[26]。
SERT KO还可引起色胺能信号以外的改变,例如在内分泌系统中,发现SERT-/-小鼠胰岛增大和B细胞增生[27];SERT基因受损大鼠杏仁核中c-FOS表达降低[28]。进一步研究发现,雄性大鼠的c-FOS表达和SERT基因型相关,SERT-/-鼠的c-FOS表达最低,SERT+/-鼠的其次,野生型则最高;而雌性则与生理周期更为密切,雌激素大于基因型对其的影响[29]。
4 SERT KO动物在相关疾病研究中的应用
4.1 SERT KO动物在中枢类疾病研究中的应用
4.1.1 抑郁症
抑郁症是最常见的中枢系统疑难杂症之一。大约12%的男性和21%的女性面临终生抑郁症的风险[30]。包括氟西汀、西酞普兰和帕罗西汀在内的选择性5-羟色胺再摄取抑制剂(SSRIs)通过限制细胞外5-HT的清除,提高大脑5-HT水平和作用时间来抗抑郁症。SSRIs缓解这类疾病症状的效应可以维持数天至数周[31]。虽然SSRIs在世界范围内得到了广泛的应用,但他们也存在一些不可忽视的问题,据报道,SSRIs起效时间较长,一般2~4周见效,而且仅对60%的患者有着不错的疗效[32]。SERT KO小鼠可以作为观察应用SSRIs等药物后情况的有效工具[33]。利用SERT KO模型研究发现氟西汀诱导的神经可塑性修复可以改善抑郁,但并不是依赖于色胺能通路,而可能是原肌球蛋白相關受体激酶B(tropomyosin-related receptor kinase B,TrkB)信号通路直接被激活,这对现有SSRIs耐受现象研究提供了一个启示[34]。
4.1.2 自闭症谱系障碍
孤独症谱系障碍(autistic spectrum disorder,ASD)是一种神经发育障碍性疾病,主要包括两个主要症状:①语言和非语言的社会交流和互惠的社会互动障碍;②行为、兴趣和活动受限、重复。ASD在一般人群中的发病率超过1%,并有研究证实5-HT相关的基因与其关系密切[35]。在ASD患者人群中,无论是否伴有智力障碍,有30%人群全血和血小板中5-HT含量升高,这与SERT的功能降低显著相关[36]。动物研究中,雄性SERT-/-小鼠表现出相较于野生型小鼠更弱的社交能力[37]。另一项对雌性小鼠的研究发现,SERT-/-小鼠的行为学发生了较为复杂的改变,除了焦虑和血清素综合症外,活动性明显减少[38]。SERT-/-大鼠在总的社交时间上减少,但是跟随同窝动物的时间增加,这也表明大鼠在SERT KO以后,出现了典型的ASD样症状,可以作为ASD的动物模型[39]。应用SERT-/-动物模型,发现了一些可能治疗ASD的方法。在SERT+/-和SERT-/-小鼠的ASD相关行为缺陷可以通过2周的无色氨酸饮食降低纹状体细胞外5-HT水平来纠正,并能恢复5-HT相关基因AU015836的表达[40]。在SERT-/-小鼠孕期补充二十二碳六烯酸(docosahexaenoic acid,DHA),其后代的纹状体多巴胺而不是5-HT含量显著下降,并减少了ASD样行为[41]。
4.2 SERT KO动物在外周疾病研究中的应用
4.2.1 肠易激综合征
肠易激综合征(irritable bowel syndrome,IBS)是一种常见的功能性胃肠病,以胃肠动力和内脏感觉功能紊乱为主要表现,并伴有明显的性别差异,女性患者约为男性的两倍[42]。相比于野生型大鼠,SERT-/-大鼠表现出对结肠球囊扩张痛觉更敏感,即更高的内脏敏感性,且雌鼠比雄鼠更为敏感[43]。除内脏感觉外,SERT KO大鼠还存在胃肠运动的改变[44]。我们的前期研究也发现SERT-/-大鼠的结肠运动比野生型大鼠更快[20]。SERT KO以后,大鼠出现了和IBS患者相似的症状,这些证据说明SERT KO大鼠可作为研究IBS的动物模型。应用SERT KO大鼠,研究者们发现这种内脏敏感性的升高与脊柱背侧5-HT3受体信号的增加有关[45]。
4.2.2 其他疾病
5-HT水平的升高进而调节血管张力和血管平滑肌细胞增殖一直被认为是肺动脉高压(pulmonary arterial hypertension,PAH)发生发展的重要因素[46]。Michiel等[47]的研究发现SERT-/-大鼠也能出现PAH,证明了色胺能通路的完整性并不是PAH发生发展的必要条件。
人类研究发现代谢综合征和肥胖患者的中枢与外周SERT表达降低[48]。动物研究发现,SERT-/-小鼠也表现出糖耐量下降,胰岛素抵抗,白色脂肪组织增加等变化,并且雌性小鼠比雄性更为严重,这可以通过补充雌激素来改善[49,50]。提示,SERT-/-小鼠也可以作为研究肥胖和糖耐量异常的动物模型。
5 总结和展望
以5-HT为核心的色胺能系统在中枢和外周都扮演着重要的角色,SERT作为生理状态下唯一的5-HT高效转运体在维持色胺能稳态中发挥着重要作用。当SERT基因受损或缺失后,SERT-/-机体发生了不同程度的改变以及相应的一些代偿。这些变化的存在也让SERT-/-动物成为了研究相关疾病的生物工具。目前应用SERT-/-动物开展的研究主要还集中在中枢系统,外周的研究相对较少,今后还可以通过研究发现SERT-/-动物更多的病理生理学改变,从而作为各种相关疾病模型用于开发新药等研究。 參考文献
[1] Murphy DL, Lerner A, Rudnick G, et al. Serotonin transporter: gene, genetic disorders, and pharmacogenetics[J]. Mol Interv, 2004, 4(2): 109-123.
[2] Kristensen AS, Andersen J, Jorgensen TN, et al. SLC6 neurotransmitter transporters: structure, function, and regulation[J]. Pharmacol Rev, 2011, 63(3): 585-640.
[3] Gorwood P, Batel P, Ades J, et al. Serotonin transporter gene polymorphisms, alcoholism, and suicidal behavior[J]. Biol Psychiatry, 2000, 48(4): 259-264.
[4] Sarmiento-Hernandez EI, Ulloa-Flores RE, CamarenaMedellin B, et al. Association between 5-HTTLPR polymorphism, suicide attempt and comorbidity in Mexican adolescents with major depressive disorder[J]. Actas Esp Psiquiatr, 2019, 47(1): 1-6.
[5] Saul A, Taylor B, Simpson S Jr, et al. Polymorphism in the serotonin transporter gene polymorphisms (5-HTTLPR) modifies the association between significant life events and depression in people with multiple sclerosis[J]. Mult Scler, 2019, 25(6): 848-855.
[6] Caspi A, Hariri AR, Holmes A, et al. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits[J]. Am J Psychiatry, 2010, 167(5): 509-527.
[7] Krakenberg V, von Kortzfleisch VT, Kaiser S, et al. Differential effects of serotonin transporter genotype on anxiety-like behavior and cognitive judgment bias in mice[J/ OL]. Front Behav Neurosci, 2019, 13: 263. doi: 10.3389/ fnbeh.2019.00263
[8] Silva AJ, Paylor R, Wehner JM, et al. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice[J]. Science, 1992, 257(5067): 206-211.
[9] Smits BM, Mudde JB, van de Belt J, et al. Generation of gene knockouts and mutant models in the laboratory rat by ENU-driven target-selected mutagenesis[J]. Pharmacogenet Genomics, 2006, 16(3): 159-169.
[10] Baganz NL, Horton RE, Calderon AS, et al. Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice[J]. Proc Natl Acad Sci U S A, 2008, 105(48): 18976-18981.
[11] Hassell JE Jr, Collins VE, Li H, et al. Local inhibition of uptake2 transporters augments stress-induced increases in serotonin in the rat central amygdala[J]. Neurosci Lett, 2019, 701: 119-124.
[12] Hagan CE, Schenk JO, Neumaier JF. The contribution of low-affinity transport mechanisms to serotonin clearance in synaptosomes[J]. Synapse, 2011, 65(10): 1015-1023. [13] Greig CJ, Gandotra N, Tackett JJ, et al. Enhanced serotonin signaling increases intestinal neuroplasticity[J]. J Surg Res, 2016, 206(1): 151-158.
[14] Tackett JJ, Gandotra N, Bamdad MC, et al. Enhanced serotonin signaling stimulates ordered intestinal mucosal growth[J]. J Surg Res, 2017, 208: 198-203.
[15] Olivier JD, Van Der Hart MG, Van Swelm RP, et al. A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders[J]. Neuroscience, 2008, 152(3): 573-584.
[16] Kim DK, Tolliver TJ, Huang SJ, et al. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter[J]. Neuropharmacology, 2005, 49(6): 798-810.
[17] Galligan JJ, Patel BA, Schneider SP, et al. Visceral hypersensitivity in female but not in male serotonin transporter knockout rats[J]. Neurogastroenterol Motil, 2013, 25(6): e373-e381.
[18] Geng H, Peng D, Huang Y, et al. Changes in sexual performance and biochemical characterisation of functional neural regions: a study in serotonin transporter knockout male rats[J]. Andrologia, 2019, 51(7): e13291.
[19] Greig CJ, Zhang L, Cowles RA. Potentiated serotonin signaling in serotonin re-uptake transporter knockout mice increases enterocyte mass and small intestinal absorptive function[J]. Physiol Rep, 2019, 7(21): e14278.
[20] Wang Y, Dong Y, Wang E, et al. Shugan decoction alleviates colonic dysmotility in female sert-knockout rats by decreasing M3 receptor expression[J]. Front Pharmacol, 2020, 11: 01082.
[21] Gobbi G, Murphy DL, Lesch K, et al. Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study[J]. J Pharmacol Exp Ther, 2001, 296(3): 987-995.
[22] Chen JJ, Li Z, Pan H, et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the highaffinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters[J]. J Neurosci, 2001, 21(16): 6348-6361.
[23] Schipper P, Henckens M, Borghans B, et al. Prior fear conditioning does not impede enhanced active avoidance in serotonin transporter knockout rats[J]. Behav Brain Res, 2017, 326: 77-86.
[24] Schipper P, Henckens M, Lopresto D, et al. Acute inescapable stress alleviates fear extinction recall deficits caused by serotonin transporter abolishment[J]. Behav Brain Res, 2018, 346: 16-20. [25] Sbrini G, Brivio P, Bosch K, et al. Enrichment environment positively influences depression- and anxiety-like behavior in serotonin transporter knockout rats through the modulation of neuroplasticity, spine, and GABAergic markers[J]. Genes(Basel), 2020, 11(11): 1248.
[26] Esquivel-Franco DC, de Boer SF, Waldinger M, et al. Pharmacological studies on the role of 5-HT1A receptors in male sexual behavior of wildtype and serotonin transporter knockout rats[J]. Front Behav Neurosci, 2020, 14: 40.
[27] Chen X, Margolis KJ, Gershon MD, et al. Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake[J/OL]. PLoS One, 2012, 7(3): e32511. doi: 10.1371/journal.pone.0032511.
[28] Shan L, Guo HY, van den Heuvel C, et al. Impaired fear extinction in serotonin transporter knockout rats is associated with increased 5-hydroxymethylcytosine in the amygdala[J]. CNS Neurosci Ther, 2018, 24(9): 810-819.
[29] Kolter JF, Hildenbrand MF, Popp S, et al. Serotonin transporter genotype modulates resting state and predator stress-induced amygdala perfusion in mice in a sex-dependent manner[J/OL]. PLoS One, 2021, 16(2): e0247311. doi: 10.1371/journal.pone.0247311.
[30] Remick RA. Diagnosis and management of depression in primary care: a clinical update and review[J]. CMAJ, 2002, 167(11): 1253-1260.
[31] Neubauer HA, Hansen CG, Wiborg O. Dissection of an allosteric mechanism on the serotonin transporter: a crossspecies study[J]. Mol Pharmacol, 2006, 69(4): 1242-1250.
[32] Kulikov AV, Gainetdinov RR, Ponimaskin E, et al. Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy[J]. Expert Opin Ther Targets, 2018, 22(4): 319-330.
[33] Fakhoury M. Revisiting the serotonin hypothesis: implications for major depressive disorders[J]. Mol Neurobiol, 2016, 53(5): 2778-2786.
[34] Levy MJF, Boulle F, Emerit MB, et al. 5-HTT independent effects of fluoxetine on neuroplasticity[J]. Sci Rep, 2019,9(1): 6311.
[35] Gilman SR, Iossifov I, Levy D, et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses[J]. Neuron, 2011, 70(5): 898-907.
[36] Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and metaanalysis[J]. Eur Neuropsychopharmacol, 2014, 24(6): 919-929.
[37] Moy SS, Nadler JJ, Young NB, et al. Social approach in genetically engineered mouse lines relevant to autism[J]. Genes Brain Behav, 2009, 8(2): 129-142. [38] Kalueff AV, Fox MA, Gallagher PS, et al. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice[J]. Genes Brain Behav, 2007, 6(4): 389-400.
[39] Golebiowska J, Holuj M, Potasiewicz A, et al. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats[J]. Sci Rep, 2019, 9(1): 20283.
[40] Tanaka M, Sato A, Kasai S, et al. Brain hyperserotonemia causes autism-relevant social deficits in mice[J/OL]. Mol Autism, 2018, 9: 60. doi: 10.1186/s13229-018-0243-3.
[41] Matsui F, Hecht P, Yoshimoto K, et al. DHA mitigates autistic behaviors accompanied by dopaminergic change in a gene/ prenatal stress mouse model[J]. Neuroscience, 2018, 371: 407-419.
[42] Irvine AJ, Chey WD, Ford AC. Screening for celiac disease in irritable bowel syndrome: an updated systematic review and meta-analysis[J]. Am J Gastroenterol, 2017, 112(1): 65-76.
[43] Icenhour A, Labrenz F, Roderigo T, et al. Are there sex differences in visceral sensitivity in young healthy men and women?[J]. Neurogastroenterol Motil, 2019: e13664.
[44] Homberg JR, Lesch KP. Looking on the bright side of serotonin transporter gene variation[J]. Biol Psychiatry, 2011, 69(6): 513-519.
[45] El-Ayache N, Galligan JJ. 5-HT3 receptor signaling in serotonin transporter-knockout rats: a female sex-specific animal model of visceral hypersensitivity[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(1): G132-G143.
[46] Thomas M, Ciuclan L, Hussey M, et al. Targeting the serotonin pathway for the treatment of pulmonary arterial hypertension[J]. Pharmacol ther, 2013, 138(3): 409-417.
[47] de Raaf MA, Kroeze Y, Middelman A, et al. Serotonin transporter is not required for the development of severe pulmonary hypertension in the Sugen hypoxia rat model[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(10): L1164-L1173.
[48] Nam SB, Kim K, Kim BS, et al. The effect of obesity on the availabilities of dopamine and serotonin transporters[J]. Sci Rep, 2018, 8(1): 4924.
[49] Zha W, Ho HTB, Hu T, et al. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance[J]. Sci Rep, 2017, 7(1): 1137.
[50] Zha W, Hu T, Hebert MF, et al. Effect of pregnancy on paroxetine-induced adiposity and glucose intolerance in mice[J]. J Pharmacol Exp Ther, 2019, 371(1): 113-120.
关键词 血清素再摄取转运体 血清素 基因敲除 动物模型
中图分类号:R363.21 文献标志码:A 文章编号:1006-1533(2021)11-0052-05
Pathophysiological changes and application of serotonin transporter gene knockout animals*
WANG Enkang**, YUAN Jianye***(Institute of Digestive Diseases; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China)
ABSTRACT Serotonin reuptake transporter (SERT) is an important molecule in the serotonergic system. It is responsible for the transmission and reuptake of serotonin. By knockout (KO) of SERT gene slc6A4, animal models of SERT KO (slc6A-/-or SERT-/-) in different species have been established for the studies of a series of related diseases. This review summarizes the pathophysiological changes of SERT KO animals and the applications of them as disease models in related studies.
KEy WORDS serotonin reuptake transporter; serotonin; gene knockout; animal model
1 血清素和血清素再摄取转运体
与认知、情绪、摄食等有关的5-羟色胺(5-hydroxytryptamine,5-HT)在中枢和外周都发挥着重要作用。5-HT通过庞大的5-HT受体家族发挥作用。血清素再摄取转运体(serotonin reuptake transporter,SERT;也称5-HTT)由溶质载体家族6成员4基因(slc6A4)编码,是生理状态下5-HT唯一的高效转运体,通过将5-HT转运至细胞内灭活对组织间隙的5-HT进行再摄取[1],从而精细调控细胞外液中5-HT浓度、组织中5-HT受体表达和功能以及中缝核中不同区域5-HT能神经元的放电速率,调节5-HT神经传递、局部免疫反应和炎症,维持5-HT系统的稳态[2]。
2 SERT基因多态性
在人类中,slc6A4基因位于第17号染色体上,其转录活性是由插入/删除44个SERT关联多态区(serotonintransporter-linked polymorphic region,5-HTTLPR)多态性碱基对来调节的,该多态性区域位于转录起始位点的上游。基于5-HTTLPR多态性,slc6A4基因有16个长等位基因和14个短等位基因,其中短等位基因的转录活性较低[3]。有研究发现,青少年抑郁和自杀与短-短基因型显著相关[4]。在成年红斑狼疮患者中,拥有短等位基因的人则更容易焦虑/抑郁,且程度和短等位基因的数量呈正相关[5]。人类中这种基因多态性导致的病理生理病理改变可以被啮齿动物SERT基因缺失所模拟[6]。slc6A4-/-鼠和slc6A4+/-鼠表现出明显的短等位基因依赖性行为异常,且slc6A4-/-鼠与slc6A4+/-鼠相比有着更明显的精神行为缺陷[7]。
3 SERT基因敲除后动物的病理生理改变
1992年,Silva等[8]在《Science》上发文宣告SERT敲除(knock out, KO)小鼠的诞生。2006年,Smits团队[9]引进了N-乙基-N-亚硝基脲(N-ethyl-N-nitrosourea,ENU)驱动靶向选择诱变技术,首次成功制備出SERT KO大鼠。
虽然说SERT是正常生理条件下唯一的高效5-HT转运体,但随着研究的深入,科学家们发现一些低亲和力转运蛋白如神经元外单胺转运体(extraneuronal monoamine transporter,EMT)和有机阳离子转运体(organic cation transporter,OCT)在5-HT的转运和再摄取中也起着重要作用[10-11]。随着5-HT浓度升高,上述低亲和力转运体对5-HT的清除作用变得越来越重要[12]。进一步研究发现,SERT KO小鼠OCT3 mRNA在海马区的表达显著升高。尽管有这些代偿机制调节5-HT的浓度,SERT KO小鼠5-HT浓度仍然明显高于野生鼠5-HT的生理浓度。
增强的5-HT信号会影响机体的生理功能,比如会出现肠道神经可塑性增强、肠绒毛升高、隐窝变深、肠细胞增殖增加等[13-14]。相关行为学实验证实SERT KO大鼠表现出焦虑、抑郁样行为[15]。这些情绪变化与性别相关,雌性SERT KO鼠表现出比雄性鼠更明显的抑郁和/或焦虑样改变[16]。同样与性别相关的变化还有内脏敏感性,雌性SERT-/-大鼠相较于雄性SERT-/-大鼠有着更高的内脏敏感性,即更低的疼痛阈值[17]。中枢SERT和5-HT水平的改变影响了大鼠的射精活动,slc6A4-/-鼠表现出比野生型(wild type,WT)鼠更少的射精次数,更长的射精潜伏期,而slc6A4+/-鼠与WT鼠无差异[18]。另有研究发现,增强的5-HT信号可以促进SERT-/-小鼠全段肠黏膜的吸收和小肠段黏膜的生长,且远端小肠黏膜的生长能力最为显著[19];SERT-/-大鼠肠道动力的改变主要在结肠段,伴随结肠组织中毒蕈碱型3受体(muscarinic type 3 receptor,M3)表达的增加[20]。 较高的5-HT浓度还会导致相关受体对5-HT的超敏和脱敏[21]。前者可能与水样腹泻有关,而后者可能与短暂性的便秘有关[22]。SERT-/-小鼠突触前后5-HT1A受体都脱敏,而SERT+/-小鼠仅突触前5-HT1A脱敏[21]。SERT缺失以后,大鼠对于急性不可避免压力(inescapable stress,IS)更容易产生应激反应,但是在之后的反复IS的处理中,SERT-/-大鼠表现出了恐惧消退的表现,这可能与5-HT1A受体的脱敏有关[23-24]。SERT-/-大鼠对积极环境比较敏感,研究证实一直暴露在积极环境中的大鼠,恐惧表现可以恢复至正常水平[25]。另外有药理学研究证实,SERT-/-大鼠对提高性功能的5-HT1A受体激动剂药效不敏感是由于5-HT1A受体的脱敏引起的[26]。
SERT KO还可引起色胺能信号以外的改变,例如在内分泌系统中,发现SERT-/-小鼠胰岛增大和B细胞增生[27];SERT基因受损大鼠杏仁核中c-FOS表达降低[28]。进一步研究发现,雄性大鼠的c-FOS表达和SERT基因型相关,SERT-/-鼠的c-FOS表达最低,SERT+/-鼠的其次,野生型则最高;而雌性则与生理周期更为密切,雌激素大于基因型对其的影响[29]。
4 SERT KO动物在相关疾病研究中的应用
4.1 SERT KO动物在中枢类疾病研究中的应用
4.1.1 抑郁症
抑郁症是最常见的中枢系统疑难杂症之一。大约12%的男性和21%的女性面临终生抑郁症的风险[30]。包括氟西汀、西酞普兰和帕罗西汀在内的选择性5-羟色胺再摄取抑制剂(SSRIs)通过限制细胞外5-HT的清除,提高大脑5-HT水平和作用时间来抗抑郁症。SSRIs缓解这类疾病症状的效应可以维持数天至数周[31]。虽然SSRIs在世界范围内得到了广泛的应用,但他们也存在一些不可忽视的问题,据报道,SSRIs起效时间较长,一般2~4周见效,而且仅对60%的患者有着不错的疗效[32]。SERT KO小鼠可以作为观察应用SSRIs等药物后情况的有效工具[33]。利用SERT KO模型研究发现氟西汀诱导的神经可塑性修复可以改善抑郁,但并不是依赖于色胺能通路,而可能是原肌球蛋白相關受体激酶B(tropomyosin-related receptor kinase B,TrkB)信号通路直接被激活,这对现有SSRIs耐受现象研究提供了一个启示[34]。
4.1.2 自闭症谱系障碍
孤独症谱系障碍(autistic spectrum disorder,ASD)是一种神经发育障碍性疾病,主要包括两个主要症状:①语言和非语言的社会交流和互惠的社会互动障碍;②行为、兴趣和活动受限、重复。ASD在一般人群中的发病率超过1%,并有研究证实5-HT相关的基因与其关系密切[35]。在ASD患者人群中,无论是否伴有智力障碍,有30%人群全血和血小板中5-HT含量升高,这与SERT的功能降低显著相关[36]。动物研究中,雄性SERT-/-小鼠表现出相较于野生型小鼠更弱的社交能力[37]。另一项对雌性小鼠的研究发现,SERT-/-小鼠的行为学发生了较为复杂的改变,除了焦虑和血清素综合症外,活动性明显减少[38]。SERT-/-大鼠在总的社交时间上减少,但是跟随同窝动物的时间增加,这也表明大鼠在SERT KO以后,出现了典型的ASD样症状,可以作为ASD的动物模型[39]。应用SERT-/-动物模型,发现了一些可能治疗ASD的方法。在SERT+/-和SERT-/-小鼠的ASD相关行为缺陷可以通过2周的无色氨酸饮食降低纹状体细胞外5-HT水平来纠正,并能恢复5-HT相关基因AU015836的表达[40]。在SERT-/-小鼠孕期补充二十二碳六烯酸(docosahexaenoic acid,DHA),其后代的纹状体多巴胺而不是5-HT含量显著下降,并减少了ASD样行为[41]。
4.2 SERT KO动物在外周疾病研究中的应用
4.2.1 肠易激综合征
肠易激综合征(irritable bowel syndrome,IBS)是一种常见的功能性胃肠病,以胃肠动力和内脏感觉功能紊乱为主要表现,并伴有明显的性别差异,女性患者约为男性的两倍[42]。相比于野生型大鼠,SERT-/-大鼠表现出对结肠球囊扩张痛觉更敏感,即更高的内脏敏感性,且雌鼠比雄鼠更为敏感[43]。除内脏感觉外,SERT KO大鼠还存在胃肠运动的改变[44]。我们的前期研究也发现SERT-/-大鼠的结肠运动比野生型大鼠更快[20]。SERT KO以后,大鼠出现了和IBS患者相似的症状,这些证据说明SERT KO大鼠可作为研究IBS的动物模型。应用SERT KO大鼠,研究者们发现这种内脏敏感性的升高与脊柱背侧5-HT3受体信号的增加有关[45]。
4.2.2 其他疾病
5-HT水平的升高进而调节血管张力和血管平滑肌细胞增殖一直被认为是肺动脉高压(pulmonary arterial hypertension,PAH)发生发展的重要因素[46]。Michiel等[47]的研究发现SERT-/-大鼠也能出现PAH,证明了色胺能通路的完整性并不是PAH发生发展的必要条件。
人类研究发现代谢综合征和肥胖患者的中枢与外周SERT表达降低[48]。动物研究发现,SERT-/-小鼠也表现出糖耐量下降,胰岛素抵抗,白色脂肪组织增加等变化,并且雌性小鼠比雄性更为严重,这可以通过补充雌激素来改善[49,50]。提示,SERT-/-小鼠也可以作为研究肥胖和糖耐量异常的动物模型。
5 总结和展望
以5-HT为核心的色胺能系统在中枢和外周都扮演着重要的角色,SERT作为生理状态下唯一的5-HT高效转运体在维持色胺能稳态中发挥着重要作用。当SERT基因受损或缺失后,SERT-/-机体发生了不同程度的改变以及相应的一些代偿。这些变化的存在也让SERT-/-动物成为了研究相关疾病的生物工具。目前应用SERT-/-动物开展的研究主要还集中在中枢系统,外周的研究相对较少,今后还可以通过研究发现SERT-/-动物更多的病理生理学改变,从而作为各种相关疾病模型用于开发新药等研究。 參考文献
[1] Murphy DL, Lerner A, Rudnick G, et al. Serotonin transporter: gene, genetic disorders, and pharmacogenetics[J]. Mol Interv, 2004, 4(2): 109-123.
[2] Kristensen AS, Andersen J, Jorgensen TN, et al. SLC6 neurotransmitter transporters: structure, function, and regulation[J]. Pharmacol Rev, 2011, 63(3): 585-640.
[3] Gorwood P, Batel P, Ades J, et al. Serotonin transporter gene polymorphisms, alcoholism, and suicidal behavior[J]. Biol Psychiatry, 2000, 48(4): 259-264.
[4] Sarmiento-Hernandez EI, Ulloa-Flores RE, CamarenaMedellin B, et al. Association between 5-HTTLPR polymorphism, suicide attempt and comorbidity in Mexican adolescents with major depressive disorder[J]. Actas Esp Psiquiatr, 2019, 47(1): 1-6.
[5] Saul A, Taylor B, Simpson S Jr, et al. Polymorphism in the serotonin transporter gene polymorphisms (5-HTTLPR) modifies the association between significant life events and depression in people with multiple sclerosis[J]. Mult Scler, 2019, 25(6): 848-855.
[6] Caspi A, Hariri AR, Holmes A, et al. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits[J]. Am J Psychiatry, 2010, 167(5): 509-527.
[7] Krakenberg V, von Kortzfleisch VT, Kaiser S, et al. Differential effects of serotonin transporter genotype on anxiety-like behavior and cognitive judgment bias in mice[J/ OL]. Front Behav Neurosci, 2019, 13: 263. doi: 10.3389/ fnbeh.2019.00263
[8] Silva AJ, Paylor R, Wehner JM, et al. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice[J]. Science, 1992, 257(5067): 206-211.
[9] Smits BM, Mudde JB, van de Belt J, et al. Generation of gene knockouts and mutant models in the laboratory rat by ENU-driven target-selected mutagenesis[J]. Pharmacogenet Genomics, 2006, 16(3): 159-169.
[10] Baganz NL, Horton RE, Calderon AS, et al. Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice[J]. Proc Natl Acad Sci U S A, 2008, 105(48): 18976-18981.
[11] Hassell JE Jr, Collins VE, Li H, et al. Local inhibition of uptake2 transporters augments stress-induced increases in serotonin in the rat central amygdala[J]. Neurosci Lett, 2019, 701: 119-124.
[12] Hagan CE, Schenk JO, Neumaier JF. The contribution of low-affinity transport mechanisms to serotonin clearance in synaptosomes[J]. Synapse, 2011, 65(10): 1015-1023. [13] Greig CJ, Gandotra N, Tackett JJ, et al. Enhanced serotonin signaling increases intestinal neuroplasticity[J]. J Surg Res, 2016, 206(1): 151-158.
[14] Tackett JJ, Gandotra N, Bamdad MC, et al. Enhanced serotonin signaling stimulates ordered intestinal mucosal growth[J]. J Surg Res, 2017, 208: 198-203.
[15] Olivier JD, Van Der Hart MG, Van Swelm RP, et al. A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders[J]. Neuroscience, 2008, 152(3): 573-584.
[16] Kim DK, Tolliver TJ, Huang SJ, et al. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter[J]. Neuropharmacology, 2005, 49(6): 798-810.
[17] Galligan JJ, Patel BA, Schneider SP, et al. Visceral hypersensitivity in female but not in male serotonin transporter knockout rats[J]. Neurogastroenterol Motil, 2013, 25(6): e373-e381.
[18] Geng H, Peng D, Huang Y, et al. Changes in sexual performance and biochemical characterisation of functional neural regions: a study in serotonin transporter knockout male rats[J]. Andrologia, 2019, 51(7): e13291.
[19] Greig CJ, Zhang L, Cowles RA. Potentiated serotonin signaling in serotonin re-uptake transporter knockout mice increases enterocyte mass and small intestinal absorptive function[J]. Physiol Rep, 2019, 7(21): e14278.
[20] Wang Y, Dong Y, Wang E, et al. Shugan decoction alleviates colonic dysmotility in female sert-knockout rats by decreasing M3 receptor expression[J]. Front Pharmacol, 2020, 11: 01082.
[21] Gobbi G, Murphy DL, Lesch K, et al. Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study[J]. J Pharmacol Exp Ther, 2001, 296(3): 987-995.
[22] Chen JJ, Li Z, Pan H, et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the highaffinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters[J]. J Neurosci, 2001, 21(16): 6348-6361.
[23] Schipper P, Henckens M, Borghans B, et al. Prior fear conditioning does not impede enhanced active avoidance in serotonin transporter knockout rats[J]. Behav Brain Res, 2017, 326: 77-86.
[24] Schipper P, Henckens M, Lopresto D, et al. Acute inescapable stress alleviates fear extinction recall deficits caused by serotonin transporter abolishment[J]. Behav Brain Res, 2018, 346: 16-20. [25] Sbrini G, Brivio P, Bosch K, et al. Enrichment environment positively influences depression- and anxiety-like behavior in serotonin transporter knockout rats through the modulation of neuroplasticity, spine, and GABAergic markers[J]. Genes(Basel), 2020, 11(11): 1248.
[26] Esquivel-Franco DC, de Boer SF, Waldinger M, et al. Pharmacological studies on the role of 5-HT1A receptors in male sexual behavior of wildtype and serotonin transporter knockout rats[J]. Front Behav Neurosci, 2020, 14: 40.
[27] Chen X, Margolis KJ, Gershon MD, et al. Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake[J/OL]. PLoS One, 2012, 7(3): e32511. doi: 10.1371/journal.pone.0032511.
[28] Shan L, Guo HY, van den Heuvel C, et al. Impaired fear extinction in serotonin transporter knockout rats is associated with increased 5-hydroxymethylcytosine in the amygdala[J]. CNS Neurosci Ther, 2018, 24(9): 810-819.
[29] Kolter JF, Hildenbrand MF, Popp S, et al. Serotonin transporter genotype modulates resting state and predator stress-induced amygdala perfusion in mice in a sex-dependent manner[J/OL]. PLoS One, 2021, 16(2): e0247311. doi: 10.1371/journal.pone.0247311.
[30] Remick RA. Diagnosis and management of depression in primary care: a clinical update and review[J]. CMAJ, 2002, 167(11): 1253-1260.
[31] Neubauer HA, Hansen CG, Wiborg O. Dissection of an allosteric mechanism on the serotonin transporter: a crossspecies study[J]. Mol Pharmacol, 2006, 69(4): 1242-1250.
[32] Kulikov AV, Gainetdinov RR, Ponimaskin E, et al. Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy[J]. Expert Opin Ther Targets, 2018, 22(4): 319-330.
[33] Fakhoury M. Revisiting the serotonin hypothesis: implications for major depressive disorders[J]. Mol Neurobiol, 2016, 53(5): 2778-2786.
[34] Levy MJF, Boulle F, Emerit MB, et al. 5-HTT independent effects of fluoxetine on neuroplasticity[J]. Sci Rep, 2019,9(1): 6311.
[35] Gilman SR, Iossifov I, Levy D, et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses[J]. Neuron, 2011, 70(5): 898-907.
[36] Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and metaanalysis[J]. Eur Neuropsychopharmacol, 2014, 24(6): 919-929.
[37] Moy SS, Nadler JJ, Young NB, et al. Social approach in genetically engineered mouse lines relevant to autism[J]. Genes Brain Behav, 2009, 8(2): 129-142. [38] Kalueff AV, Fox MA, Gallagher PS, et al. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice[J]. Genes Brain Behav, 2007, 6(4): 389-400.
[39] Golebiowska J, Holuj M, Potasiewicz A, et al. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats[J]. Sci Rep, 2019, 9(1): 20283.
[40] Tanaka M, Sato A, Kasai S, et al. Brain hyperserotonemia causes autism-relevant social deficits in mice[J/OL]. Mol Autism, 2018, 9: 60. doi: 10.1186/s13229-018-0243-3.
[41] Matsui F, Hecht P, Yoshimoto K, et al. DHA mitigates autistic behaviors accompanied by dopaminergic change in a gene/ prenatal stress mouse model[J]. Neuroscience, 2018, 371: 407-419.
[42] Irvine AJ, Chey WD, Ford AC. Screening for celiac disease in irritable bowel syndrome: an updated systematic review and meta-analysis[J]. Am J Gastroenterol, 2017, 112(1): 65-76.
[43] Icenhour A, Labrenz F, Roderigo T, et al. Are there sex differences in visceral sensitivity in young healthy men and women?[J]. Neurogastroenterol Motil, 2019: e13664.
[44] Homberg JR, Lesch KP. Looking on the bright side of serotonin transporter gene variation[J]. Biol Psychiatry, 2011, 69(6): 513-519.
[45] El-Ayache N, Galligan JJ. 5-HT3 receptor signaling in serotonin transporter-knockout rats: a female sex-specific animal model of visceral hypersensitivity[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(1): G132-G143.
[46] Thomas M, Ciuclan L, Hussey M, et al. Targeting the serotonin pathway for the treatment of pulmonary arterial hypertension[J]. Pharmacol ther, 2013, 138(3): 409-417.
[47] de Raaf MA, Kroeze Y, Middelman A, et al. Serotonin transporter is not required for the development of severe pulmonary hypertension in the Sugen hypoxia rat model[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(10): L1164-L1173.
[48] Nam SB, Kim K, Kim BS, et al. The effect of obesity on the availabilities of dopamine and serotonin transporters[J]. Sci Rep, 2018, 8(1): 4924.
[49] Zha W, Ho HTB, Hu T, et al. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance[J]. Sci Rep, 2017, 7(1): 1137.
[50] Zha W, Hu T, Hebert MF, et al. Effect of pregnancy on paroxetine-induced adiposity and glucose intolerance in mice[J]. J Pharmacol Exp Ther, 2019, 371(1): 113-120.