论文部分内容阅读
多标签分类是指部分样本同时归属多个类别.基于数据分解的算法因训练速度快、性能良好而得到广泛的应用.本文采用一对一分解策略,将k标签数据集分解为k(k-1)/2个两类单标签和两类双标签的数据子集.对每一训练子集统一用LS-SVM模型建立子分类器,当出现双标签样本时将其函数值设为0,并确定适当的分类阈值.对情感、景象和酵母数据集的实验结果表明,本文算法的某些性能指标优于现有一些常用的多标签分类方法.