论文部分内容阅读
该文针对中文网络评论情感分类任务,提出了一种集成学习框架。首先针对中文网络评论复杂多样的特点,采用词性组合模式、频繁词序列模式和保序子矩阵模式作为输入特征。然后采用基于信息增益的随机子空间算法解决文本特征繁多的问题,同时提高基分类器的分类性能。最后基于产品属性构造基分类器算法综合评论文本中每个属性的情感信息,进而判别评论的句子级情感倾向。实验结果表明了该框架在中文网络评论情感分类任务上的有效性,特别是在Logistic Regression分类算法上准确率达到90.3%。