论文部分内容阅读
传统的支持向量机分类算法在优化过程中对所有支持向量都进行优化,增加了计算量,降低了训练效率.针对上述缺点,在分析样本模糊隶属关系的基础上,采用改进的K近邻算法为已知样本分配隶属度,根据训练样本的隶属关系,剔除非支持向量,减少训练样本,并将其用于中文网页的分类中,得到了较好的分类效果.仿真实验结果表明,改进后的方法不仅相对简单,而且在保证分类器性能的情况下,能有效地减少支持向量机的训练样本数,从而提高支持向量机的训练和测试速度.