论文部分内容阅读
目的为了实现印刷生产过程中网点异常状态的智能诊断,提出一种基于二维经验模式分解(BEMD)的网点特征提取方法。方法通过对网点图像的BEMD分析,获取了其二维本征模式分量,并利用灰度共生矩阵(GLCM)对其进行特征提取,构建印刷网点的特征表示向量。结果依托支持向量机决策方法开展分类实验,所提出的方法能够准确诊断出网点压力不当、水墨不均等异常状态,网点分类实验的正确率达到90%以上。结论 BIMF-GLCM分析对于网点特性有着很好的表征能力,相关研究为印刷网点智能诊断特征集的构建提供了有效方法。