OVERVIEW OF COMPLEX SYSTEMS IN SPORT

来源 :Journal of Systems Science & Complexity | 被引量 : 0次 | 上传用户:liongliong437
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The complex systems approach offers an opportunity to replace the extant pre-dominant mechanistic view on sport-related phenomena.The emphasis on the environment-system relationship,the applications of complexity principles,and the use of nonlinear dynamics mathematical tools propose a deep change in sport science.Coordination dynamics,ecological dynamics,and network approaches have been successfully applied to the study of different sport-related behaviors,from movement patterns that emerge at different scales constrained by specific sport contexts to game dynamics.Sport benefit from the use of such approaches in the understanding of technical,tactical,or physical conditioning aspects which change their meaning and dilute their frontiers.The creation of new learning and training strategies for teams and individual athletes is a main practical consequence.Some challenges for the future are investigating the influence of key control parameters in the nonlinear behavior of athlete-environment systems and the possible relatedness of the dynamics and constraints acting at different spatio-temporal scales in team sports.Modelling sport-related phenomena can make useful contributions to a better understanding of complex systems and vice-versa. The complex systems approach offers an opportunity to replace the extant pre-dominant mechanistic view on sport-related phenomena. The emphasis on the environment-system relationship, the applications of complexity principles, and the use of nonlinear dynamics mathematical tools propose a deep change in sport science.Coordination dynamics, ecological dynamics, and network approaches have been successfully applied to the study of different sport-related behaviors, from movement patterns that emerge more different constrained by specific sport contexts to game dynamics.Sport benefit from the use of such approaches in the understanding of technical, tactical, or physical conditioning aspects which change their meaning and dilute their frontiers. The creation of new learning and training strategies for teams and individual athletes is a main practical consequence.Some challenges for the future are investigating the influence of key control parameters in the nonlinear behavior of athlete-enviro nment systems and the possible relatedness of the dynamics and constraints acting at different spatio-temporal scales in team sports. Modeling concerns-related phenomena can make useful contributions to a better understanding of complex systems and vice-versa.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
1 Complex Systems in Sports Sport is one of the most important activities of humanity.Its relevance goes beyond the physical/psychological benefits that their p
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊