论文部分内容阅读
The electronic structure and energy of La2Ni10H12 and La2Ni10H11He (He is at tetrahedral, octahedral or twelve-face polyhedral interstitials) double cells have been calculated using the density functional theory. Their equilibrium structure, energy bands, electronic density of states (DOS) and X-ray diffraction are presented and discussed. The results indicate the helium-3 produced due to the decay of tritium is most possibly sited at twelve-face polyhedral and octahedral interstices and changes the thermodynamic properties of LaNi5 tritide system. The changes due to aging such as the reduction in the isotherm plateau pressure, increase of the isotherm plateau slope, and appearance of deeply trapped hydrogen are caused not only by the lattice expansion, but also by modification of the electronic structure due to the presence of He.
The electronic structure and energy of La2Ni10H12 and La2Ni10H11He (He is at tetrahedral, octahedral or twelve-face polyhedral interstitials) double cells have been calculated using the density functional theory. Their equilibrium structure, energy bands, electronic density of states (DOS) and X -ray diffraction are presented and discussed. The results indicate that helium-3 produced due to the decay of tritium is most likely sited at twelve-face polyhedral and octahedral interstices and changes the thermodynamic properties of LaNi5 tritide system. The changes due to aging such as the reduction in the isotherm plateau pressure, increase of the isotherm plateau slope, and appearance of deeply trapped hydrogen are caused not only by the lattice expansion, but also by modification of the electronic structure due to the presence of He.