论文部分内容阅读
利用稀疏化学习得到的概率图模型结构简单却保留了原始概率图模型中重要的结构信息,且能同时实现结构和参数学习,因此近几年来概率图模型的稀疏化学习一直是研究的热点,其中概率图模型的第一种稀疏化学习方法是图套索.文中总结了概率图模型的稀疏化学习方法,包括概率图模型的L1范数罚稀疏化学习、概率图模型的无偏稀疏化学习、概率图模型的结构稀疏化学习和概率图模型的多任务稀疏化学习.最后,文中还指出了概率图模型的稀疏化学习未来有意义的研究方向.