论文部分内容阅读
受传感器特性影响,高光谱图像中的噪声在各个维度都有体现。噪声的存在降低了高光谱图像中信息的有效性,在进行地物分类前必须采用适当的算法对噪声予以去除。文章针对高光谱图像的噪声特性,提出了一种基于全变差的高光谱图像去噪算法。该算法将经典二维图像全变差去噪模型推广至三维形式,提出了采用双正则项及相应的调整参数的目标函数,在三维空间中完成新目标函数的离散化,并采用基于优化-最小化算法的迭代方法对目标函数进行优化与求解。对星载Hyperion成像光谱仪数据的实验表明,适当的设置调整参数,该方法可很好地提高高光