论文部分内容阅读
A new cyclic model of a four-reservoir isothermal chemical potential transformer with irreversible mass transfer, mass leakage and internal dissipation is put forward in this paper. The optimal relation be-tween the coefficient of performance (COP) and the rate of energy pumping of the generalized irre-versible four-reservoir isothermal chemical potential transformer has been derived by using finite-time thermodynamics or thermodynamic optimization. The maximum COP and the corresponding rate of energy pumping, as well as the maximum rate of energy pumping and the corresponding COP, have been obtained. Moreover, the influences of the irreversibility on the optimal performance of the iso-thermal chemical potential transformer have been revealed. It was found that the mass leakage affects the optimal performance both qualitatively and quantitatively, while the internal dissipation affects the optimal performance quantitatively. The results obtained herein can provide some new theoretical guidelines for the optimal design and development of a class of isothermal chemical potential trans-formers, such as mass exchangers, electrochemical, photochemical and solid state devices, fuel pumps, etc.
A new cyclic model of a four-reservoir isothermal chemical potential transformer with irreversible mass transfer, mass leakage and internal dissipation is put forward in this paper. The optimal relation be-tween the coefficient of performance (COP) and the rate of energy pumping of the generalized irre-versible four-reservoir isothermal chemical potential transformer has been derived by using finite-time thermodynamics or thermodynamic optimization. The maximum COP and the corresponding rate of energy pumping, as well as the maximum rate of energy pumping and the corresponding COP, There was found that the mass leakage affects the optimal performance both qualitatively and quantitatively, while the internal dissipation affects the optimal performance quantitatively. The results obtained herein can provide some new theoretical guidelines for the optimal design and development of a class of isothermal chemical potential trans-formers, such as mass exchangers, electrochemical, photochemical and solid state devices, fuel pumps, etc.