论文部分内容阅读
食品安全领域的智能问答系统旨在对用户通过自然语言进行的食品安全方面的提问做出快速、简洁的反馈,其技术挑战主要在于语义分析和答案句子表示,尤其是在于如何消除问答之间的词汇差距以加强问答匹配能力,以及如何抓取准确的核心单词以增强句子表示能力。尽管基于"短语级别"和众多的注意力模型已经取得了一定的性能提升,但基于注意力的框架都没有很好的重视位置信息。针对上述问题,运用词林和word2vec相结合的方法,提出近义词-主词替换机制(将普通词映射为核心词),实现了语义表示的归一化。同时,受位置上下文提升信息检索