Probing the intrinsic catalytic activity of carbon nanotubes for the metal-free oxidation of aromati

来源 :能源化学 | 被引量 : 0次 | 上传用户:ymqlove
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A metal-free catalytic system combining oxidized carbon nanotubes (oCNTs) and ionic liquids (ILs) is pre- sented for the oxidation of aromatic thiophene compounds with H 2 O 2 as an oxidant. The oCNTs exhibit impressively high activity and stability in the system, which show an even better performance than those of some reported metal catalysts. The ILs are proved to have indispensable influence on the enhanced catalytic performance of the oCNTs. Detailed characterization by TG-MS and XPS demonstrates that the carbonyl groups are the active sites for the oxidation process, which is further supported by the deactiva- tion and the model catalysts experiments. The quantitative analysis of different oxygen groups in oCNTs could be achieved by an isothermal temperature programmed TG-MS method. The concentration of car- bonyl groups is 1.46 mmol per 1 g oCNTs and the turnover frequency of oCNTs could also be obtained (10.7 h ? 1 in the presence of OmimPF 6 ). H 2 O 2 decomposition experiments combined with the EPR results reveal that the presence of OmimPF 6 can avoid the intermediate HO ? to form O 2 and then improve the catalytic performance of oCNTs for the oxidation of dibenzothiophene.
其他文献
Different sizes of layered CoOOH were synthesized by the molten-salt-assisted method at different temperatures.X-ray diffraction and scanning electron microscope studies reveal that CoOOH grew at (003) with increasing temperature,and its size can reach do
In this work, the effect of the presence of nickel and lead in thermal decomposition of olive tree pruning (OTP), OTP-char and OTP-ashes was studied by thermogravimetry. Experiments were conducted in two kinds of atmosphere (nitrogen atmosphere and oxidiz
Organic-inorganic perovskites solar cells (PSCs) have attracted great attention due to their rapid progress in power conversion efficiency (PCE).However,there is still an enormous challenge to achieve both high efficiency and stability devices as the deco
For the sake of accelerating the commercial application of fuel cells, non-noble metal catalysts with high activity and high stability have been widely developed to replace platinum-based catalysts. Here, we report a simple but cost-effective synthetic st
As a promising alternative anode material,silicon (Si) presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low
The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite (denoted as TSC-PDA-B
The side reaction between the active material and liquid-electrolyte cause structural damage and particle pulverization is one of the important factors leading to the capacity decay of LiNi0.80Co0.15Al0.05O2 (NCA)materials in Li ion batteries (LIBs).Surfa
Syngas to ethanol,consisting of dimethyl ether (DME) carbonylation to methyl acetate (MA) over zeolites and MA hydrogenation to ethanol on copper catalyst,has been developed in recent years,DME carbonylation over zeolites,a key step in this new process,ha
Rechargeable lithium metal batteries own the highest energy density among all electrochemical energy storage devices.Lithium metal anode in those cell system acts as paramount role in promoting high energy density [1].However,lithium anode tends to form d
Lithium sulfur batteries are one of the most promising alternative electrochemical systems,but their practical applications are largely hindered by the serious shuttling problems and sluggish redox kinetics.Here,the conductive and polar niobium nitride (N