论文部分内容阅读
首次将极端学习机(ELM)理论引入短期负荷预测领域,并以BFGS拟牛顿法对ELM网络左侧权值进行优化训练调整,形成基于迭代一解析的改进ELM预测模型.同时,采用集成技术Boosting算法,生成多个差异度大的改进ELM子网络,对其进行加权组合,构建了集成改进极端学习机预测模型.该模型不仅有效避免了极端学习机左侧权值随机给定的输出稳定性问题,而且克服了单一网络预测模型泛化能力较差等缺陷.