Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for s

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:rlhRLH
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
We demonstrate the fabrication of wearable supercapacitor electrodes.The electrodes were applied to wearable fabric by supersonically spraying the fabric with reduced graphene oxide(rGO)followed by decoration with iron oxide(Fe2O3)nanoparticles via a hydrothermal process.The integration of iron oxide with rGO flakes on wearable fabric demonstrates immense potential for applications in high-energy-storage devices.The synergetic impact of the intermingled rGO flakes and Fe2O3 nanoparticles enhances the charge transport within the composite electrode,ultimately improving the overall electrochemical performance.Taking advantage of the porous nature of the fabric,electrolyte diffusion into the active rGO and Fe2O3 materials was significantly enhanced and subsequently increased the electrochemical interfacial activities.The effect of the Fe2O3 concentration on the overall electrochemical performance was investigated.The optimal composition yields a specific capacitance of 360 F g-1 at a current density of 1A g-1 with a capacitance retention rate of 89%after 8500 galvanostatic cycles,confirming the long-term stability of the Fe2O3/rGO fabric electrode.
其他文献
Cold spraying(CS),or cold gas dynamic spray(CGDS),is an emerging solid-state powder deposition process,allowing fast and mass production and restoration of metallic components.CS of metal matrix composites(MMCs)has attracted increasing attention from acad
In this study,the carbon quantum dots,which can emit sharp red light(R-CQDs)under optical excitation,were synthesized via simple heat treatment of wine lees.The features of the photoluminescence(PL)emission from R-CQDs in solutions with different pH value
Fatigue crack growth(FCG)tests were conducted on a medium-Mn steel annealed at two intercritical annealing temperatures,resulting in different austenite(γ)to ferrite(α)phase fractions and different γ(meta-)stabilities.Novel in-situ hydrogen plasma chargin
All-inorganic halide perovskite solar cells(PSCs)have acquired great progress,especially CsPbI2Br.However,their photoelectric conversion efficiency(PCE)remains far below the theoretical predictions.Non-radiative recombination is one of the important issue
The magnetic properties,magnetocaloric effect and magnetoresistance in ErNi single crystal have been investigated in detail.With decreasing temperature,ErNi single crystal undergoes two successive mag-netic transitions:a paramagnetic to ferromagnetic tran
Taking advantage of the magnetic field inside transmission electron microscope(TEM),a unique Lorentz-force-actuated method for quantitative friction tests was developed via a commercial electromechanical holder.With this approach,a submicron-sized silver
The oxygen vacancies and micro-nano structure can optimize the electron/Li+migration kinetics in anode materials for lithium batteries(LIBs).Here,porous micro-nano structured VNb9O25 composites with rich oxygen vacancies were reasonably prepared via a fac
This study investigates the phase transformation and microstructure of porous FeAl parts sintered from elemental powder mixtures using in-situ neutron diffraction and in-situ thermal dilatometry.A single B2 structured FeAl phase was determined in the sint
As global air pollution becomes increasingly severe,various types of fibrous filters have been devel-oped to improve air filter performance.However,fibrous filters have limitations such as high packing density that generally causes high-pressure drop and
Fibers degradation and matrix cracks are very common during fabrication of composites,which seri-ously reduces the reliability and properties of the composites.In this work,2D-Cf/ZrB2-SiC composites were fabricated by a joint processing of slurry infiltra