论文部分内容阅读
针对基于向量投影的支持向量预选取方法选取投影直线过于简单粗糙,导致需要选取较多的边界向量才能包含原始问题的支持向量的问题,提出了一种新的支持向量预选取方法.该方法通过定义好的投影直线具备的3个必要特征,提出:对于线性可分情况,利用Fisher线性判别算法来获取最佳的投影直线;对于非线性可分情况,利用特征空间中心向量所在直线作为相应的投影直线.由于该方法确定的投影直线可以更好地对样本投影进行分离,因此,与基于向量投影的支持向量预选取方法相比,该方法可用更少的原始样本来构造边界向量集合,可有效降低支持向