论文部分内容阅读
该文利用SVM在小训练样本集条件下仍有高泛化能力的特性,结舍文本分类问题中同类别文本的特征在特征空间中具有聚类性分布的特点,提出一种使用语义中心集代替原训练样本集作为训练样本和支持向量的SVM:语义SVM。文中给出语义中心集的生成步骤,进而给出语义SVM的在线学习(在线分类知识积累)算法框架,以及基于SMO算法的在线学习算法的实现。实验结果说明语义SVM及其在线学习算法具有巨大的应用潜力:不仅在线学习速度和分类速度相对于标准SVM及其简单增量算法有数量级提高,而且分类准确率方面具有一定优势。