论文部分内容阅读
提出一种基于二维主成份分析(2DPCA)和压缩感知的人脸识别方法。阐述2DPCA提取特征向量的工作原理,利用压缩感知方法求解待识别图像在足够样本下的稀疏表示。由所有训练图的特征向量构成测量矩阵,将每一幅待识别图像的特征向量作为测量值,由压缩感知中求解的L1范数极小值得到待识别图像的编码信号,根据该编码信号识别人脸图像。实验结果表明,与其他组合方法相比,基于2DPCA和压缩感知的人脸识别方法得到的识别率较高。