论文部分内容阅读
Influence of Fe addition on products of self-propagating high-temperature synthesis (SHS) reaction in 3Ti-Si-2C system was investigated in the present study. Without Fe addition, Ti5Si3 and TiC are the dominant phases along with a small amount of Ti3SiC2 phase and unreacted C left in the final products. As Fe content ranges from 10% to 30%, the products consist of TiC, Ti5Si3, Fe2Ti and unreacted C, but no trace of Ti3SiC2 phase is detected. Furthermore, the amounts of both Fe2Ti and C phases increase with Fe content increasing. Addition of Fe has a great effect on the reaction route and significantly restrains the formation of Ti3SiC2 during the combustion synthesis process, and therefore, the SHS is not an effective fabrication technique to synthesize the ternary Ti3SiC2 ceramic in either 3Ti-Si-2C or Fe-3Ti-Si-2C system. Besides, without Fe addition, Ti5Si3 presents as the coarse irregular appearance with an obviously sintered morphology. In contrast, the shape of Ti5Si3 exhibits more and more spherical (cobblestone-like) and the surface becomes increasingly smooth, because the amount of liquids formed during the SHS reaction increases with the increase of Fe content. On the other hand, with Fe content increasing from 0 to 30 wt.%, the particulate size of TiC decreases from more than 5 μm to 1 μm or less, mainly due to the fact that the combustion temperature decreases with the increase of Fe content in the preforms.
Influence of Fe addition on products of self-propagating high-temperature synthesis (SHS) reaction in 3Ti-Si-2C system was investigated in the present study. Without Fe addition, Ti5Si3 and TiC are the dominant phases along with a small amount of Ti3SiC2 phase and unreacted C left in the final products. As Fe content ranges from 10% to 30%, the products consist of TiC, Ti5Si3, Fe2Ti and unreacted C, but no trace of Ti3SiC2 phase is detected. and C phases increase with Fe content increasing. Addition of Fe has a great effect on the reaction route and significant restrains the formation of Ti3SiC2 during the combustion synthesis process, and therefore, the SHS is not an effective fabrication technique to synthesize the ternary Ti3SiC2 ceramic in either 3Ti-Si-2C or Fe-3Ti-Si-2C system. Besides, without Fe addition, Ti5Si3 presents as the coarse irregular appearance with an obviously sintered morphology. In contrast, the shape of Ti5Si3 exhibits mo re and more spherical (cobblestone-like) and the surface becomes increasingly smooth, because the amount of liquids formed during the SHS reaction increases with the increase of Fe content. On the other hand, with Fe content increasing from 0 to 30 wt.% , the particulate size of TiC decreases from more than 5 μm to 1 μm or less, mainly due to the fact that the combustion temperature decreases with the increase of Fe content in the preforms.