论文部分内容阅读
通过分析影响单个飞行事件噪声的各种因素,构建了BP神经网络回归预测模型,并通过自适应遗传算法优选出参与集成的个体神经网络,提出了预测单个飞行事件噪声的神经网络集成预测模型.为了有效保证差异性,设置不同隐藏神经元个数和Bagging算法来构建和训练单个网络.实验结果表明,单个飞行事件噪声的神经网络集成预测模型相对单个BP神经网络模型泛化能力更强,稳定性-HuG更好.本文方法在测试集上误差在3dB以内的平均比率为96.9%,比单个网络高6.8%.