论文部分内容阅读
针对铥钬共掺光纤放大器在放大2μm以上长波段信号光时因存在反向放大的自发辐射(ASE)而造成的放大效率浪费的问题,提出了在放大器输入端插入一个中心波长为1950nm的光纤光栅(FBG)的方案,并从理论上研究了光栅参数对放大器在2μm以上波段增益特性的影响。通过数值模拟给出了几种不同的铥钬掺杂比例下、有无FBG时,放大器对2040nm信号光的增益随光纤长度的变化曲线,分析了插入FBG后放大器最大增益和对应的最佳光纤长度的变化,以及这种变化对铥钬掺杂比例的依赖性。通过模拟放大器输入端的反向ASE光谱,以及抽运光、信号光、ASE与FBG反射光功率沿光纤传输的演化行为,解释了FBG对放大器产生影响的根本原因,并进一步指出为提高放大器长波段增益而加入短波段FBG的适用条件。并初步研究了加入FBG对放大器增益谱及噪声特性的影响。
In view of the problem of the amplification efficiency caused by the existence of reverse-amplified spontaneous emission (ASE) when the 铥 holmium co-doped fiber amplifier amplifies the signal light with a wavelength of 2 μm or more, a method of inserting an optical fiber with a center wavelength of 1950 nm at the input end of the amplifier Grating (FBG) scheme, and theoretically studied the effect of grating parameters on the gain characteristics of the amplifier in the band above 2μm. Through the numerical simulation, the gain of 2040nm amplifier with the FBG gain at different holmium doping ratios is plotted with the length of the optical fiber. The maximum gain of the amplifier after insertion of FBG and the corresponding best fiber Length changes, and the dependence of this change on the holmium doping ratio. The fundamental reason of the influence of FBG on the amplifier is explained through the simulation of the reverse ASE spectrum at the input end of the amplifier and the evolution of pump light, signal light, reflected power of ASE and FBG along the optical fiber. Furthermore, Gain and join the short-wave FBG conditions. The effects of adding FBG on the amplifier gain spectrum and noise characteristics were also studied.