论文部分内容阅读
Mean-Shift算法在图像跟踪领域得到广泛应用,但有遮挡情况发生时,算法容易陷入局部最大值。Particle Filter作为一种基于贝叶斯估计的算法,在处理非线性运动目标跟踪问题上具有特殊的优势,但该算法计算量大,实时处理能力差。鉴于此,将两种算法相结合,提出一种以重要性函数为切入点将Mean-Shift和Particle Filter相结合的跟踪算法,首先利用Mean-Shift算法跟踪目标,利用目标与模板的相似性系数实时判断,当有遮挡发生时,算法转向Particle Filter进行后续跟