论文部分内容阅读
Background Hypoxic pulmonary hypertension (HPH) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). The mechanism of hypoxic pulmonary hypertension has not yet been fully elucidated. The mitochondrial ATP-sensitive K+ channel (MitoKATP) is extremely sensitive to hypoxia, and is a decisive factor in the control of mitochondrial membrane potential (ΔΨm). This study investigated the changes of cell membrane potential and Kv channel in cultured human pulmonary artery smooth muscle cell (hPASMC) exposed to 24 hour-hypoxia, and explored the role of MitoKATP and ΔΨm in this condition.Results After exposure to diazoxide for 24 hours, the intensity of R-123 fluorescence in normoxic hPASMCs was significantly increased compared with control group (P