论文部分内容阅读
癌症是发病率和死亡率极高的疾病,癌细胞正确识别与癌症等级正确判断具有极其重要的意义。深度神经网络(DNN)可用神经网络模拟大脑识别过程,底层提取初级特征,高层对底层特征进行组合与抽象。以乳腺癌细胞图像为例,采用BreaKHis官网数据集,在Linux操作系统安装Pycharm开发软件,以Tensorflow为框架,搭载Python2.7编译环境,增加现有神经网络的卷积层数和全连接层数,提出一种优化的深度神经网络癌细胞识别方法。实验结果表明,该方法能更加准确地识别癌细胞图像特征,有效降低现有神经网络分