论文部分内容阅读
图像特征是基于内容的图像检索(Content-based image retrieval,CBIR)的关键,大部分使用的手工特征难以有效地表示乳腺肿块的特征,底层特征与高层语义之间存在语义鸿沟。为了提高CBIR的检索性能,本文采用深度学习来提取图像的高层语义特征。由于乳腺X线图像的深度卷积特征在空间和特征维度上存在一定的冗余和噪声,本文在词汇树和倒排文件的基础上,对深度特征的空间和语义进行优化,构建了两种不同的深度语义树。为了充分发挥深度卷积特征的识别能力,根据乳腺图像深度特征的局部特性对树节点的权