深度卷积神经网络图像语义分割研究进展

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:BIGSKYKING
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在计算机视觉领域中,语义分割是场景解析和行为识别的关键任务,基于深度卷积神经网络的图像语义分割方法已经取得突破性进展。语义分割的任务是对图像中的每一个像素分配所属的类别标签,属于像素级的图像理解。目标检测仅定位目标的边界框,而语义分割需要分割出图像中的目标。本文首先分析和描述了语义分割领域存在的困难和挑战,介绍了语义分割算法性能评价的常用数据集和客观评测指标。然后,归纳和总结了现阶段主流的基于深度卷积神经网络的图像语义分割方法的国内外研究现状,依据网络训练是否需要像素级的标注图像,将现有方法分为基于
其他文献
目的文档图像检索过程中,传统的光学字符识别(OCR)技术因易受文档图像质量和字体等相关因素的影响,难以达到有效检索的目的。关键词识别技术作为OCR技术的替代方案,不需经过繁琐的OCR识别,可直接对关键词进行检索。本文针对Harris算法聚簇现象严重和运算速度慢等问题,在关键词识别技术的框架下提出了改进Harris的图像匹配算法。方法基于Fast进行特征点检测,利用Harris进行特征描述,并采用非
西花蓟马Frankliniella occidentalis是世界性重要检疫性害虫之一,不仅直接取食危害作物而且传播病毒,从而造成极为严重的经济损失.由于西花蓟马在我国具有广泛的适生范围,随
目的眼底图像中的动静脉分类是许多系统性疾病风险评估的基础步骤。基于传统机器学习的方法操作复杂,且往往依赖于血管提取的结果,不能实现端到端的动静脉分类,而深度语义分割技术的发展使得端到端的动静脉分类成为可能。本文结合深度学习强大的特征提取能力,以提升动静脉分类精度为目的,提出了一种基于语义融合的动静脉分割模型SFU-Net(semantic fusion based U-Net)。方法针对动静脉分类
目的染色体是遗传信息的重要载体,健康的人体细胞中包含46条染色体,包括22对常染色体和1对性染色体。染色体核型化分析是产前诊断和遗产疾病诊断的重要且常用方法。染色体核型化分析是指从分裂中期的细胞显微镜图像中,分割出染色体并根据染色体的条带进行分组排列的过程。染色体核型化分析通常由细胞学家手工完成,但是这个过程非常费时、繁琐且容易出错。由于染色体的非刚性特质,多条染色体之间存在重叠及交叉现象,致使染
目的图像的风格迁移是近年来机器视觉领域的研究热点之一。针对传统基于卷积神经网络(CNN)的图像风格迁移方法得到的结果图像存在风格纹理不均匀、噪声增强及迭代时间长等问题,本文在CNN框架下提出了一种基于相关对齐的总变分图像风格迁移新模型。方法在详细地分析了传统风格迁移方法的基础上,新模型引入了基于相关对齐的风格纹理提取方法,通过最小化损失函数,使得风格信息更加均匀地分布在结果图像中。通过分析比较CN
目的采用不同染色方法获得的周围神经标本经过MicroCT扫描后,会获得不同效果的神经断层扫描图像。本文针对饱和氯化钙染色、无染色方法获得的两种周围神经MicroCT图像,提出一种通用的方法,实现不同染色方法获得的周围神经MicroCT图像在统一架构下的神经束轮廓获取。方法首先设计通用方法架构,构建图像数据集,完成图像标注、分组等关键性的准备环节。然后将迁移学习算法与蒙皮区域卷积神经网络(mask
Organic-inorganic hybrid perovskite solar cells have generated wide interest due to the rapid development of their photovoltaic conversion efficiencies.However,
目的基于超像素分割的显著物体检测模型在很多公开数据集上表现优异,但在实际场景应用时,超像素分割的数量和大小难以自适应图像和目标大小的变化,从而使性能下降,且分割过多会耗时过大。为解决这一问题,本文提出基于布尔图和灰度稀缺性的小目标显著性检测方法。方法利用布尔图的思想,提取图像中较为突出的闭合区域,根据闭合区域的大小赋予其显著值,形成一幅显著图;利用灰度稀缺性,为图像中的稀缺灰度值赋予高显著值,抑制
稻田生态系统是一种需要人工干预的开放系统,其多样性较低,营养结构简单,空白生态位较多,本身具有一定的脆弱性,加之近年来耕作方式的转变,农药化肥的不合理使用等,使其脆弱
目的在文档图像版面分析上,主流的深度学习方法克服了传统方法的缺点,能够同时实现文档版面的区域定位与分类,但大多需要复杂的预处理过程,模型结构复杂。此外,文档图像数据不足的问题导致文档图像版面分析无法在通用的深度学习模型上取得较好的性能。针对上述问题,提出一种多特征融合卷积神经网络的深度学习方法。方法首先,采用不同大小的卷积核并行对输入图像进行特征提取,接着将卷积后的特征图进行融合,组成特征融合模块