【摘 要】
:
Quinones have been widely studied as a potential catholyte in water-based redox flow batteries (RFBs)due to their ability to carry both electrons and protons in aqueous solutions.The wide variety ofquinones and derivatives offers exciting opportunities to
【机 构】
:
Department of Chemical Engineering,Tsinghua University,Beijing 100084,China;State Key Laboratory of
论文部分内容阅读
Quinones have been widely studied as a potential catholyte in water-based redox flow batteries (RFBs)due to their ability to carry both electrons and protons in aqueous solutions.The wide variety ofquinones and derivatives offers exciting opportunities to optimize the device performance while poses theoretical challenges to quantify their electrochemical behavior as required for molecular design.Computational screening of target quinones with high performance is far from satisfactory.While solvation of quinones affects their potential application in RFBs in terms of both electrochemical windows,stability,and charge transport,experimental data for the solvation structure and solvation free energies are rarely available if not incomplete.Besides,conventional thermodynamic models are mostly unreliable to estimate the properties of direct interest for electrochemical applications.Here,we analyze the hydration free ener-gies of more than 1,400 quinones by combining the first-principles calculations and the classical density functional theory.In order to attain chemical insights and possible trends,special attention is placed on the effects of “backbones” and functional groups on the solvation behavior.The theoretical results pro-vide a thermodynamic basis for the design,synthesis,and screening of high-performance catholytes for electrical energy storage.
其他文献
With the widespread use of lithium ion batteries in portable electronics and electric vehicles,further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery research
Steam pretreatment was employed to disrupt microalgal cells for lipids extraction.Effects of steam pre-treatment on microstructure of microalgal cells were investigated through scanning electron microscopy(SEM) and transmission electron microscopy (TEM).E
In the chemical looping with oxygen uncoupling (CLOU) process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combustion rate of carbon is faster than the
Under high-temperature batch fluidized bed conditions and by employing Juye coal as the raw material,the present study determined the effects of the bed material,temperature,OC/C ratio,steam flow and oxygen carrier cycle on the chemical looping combustion
Carbon nanotubes (CNTs) have been far and wide employed as the counter electrodes (CEs) in dye-sensitized solar cells because of their individual physical and chemical properties.However,the tech-niques available now,such as chemical vapor deposition,arc
Treatments of atherogenesis,one of the most common cardiovascular diseases (CVD),are continuously being made thanks to innovation and an increasingly in-depth knowledge of percutaneous transluminal coronary angioplasty (PTCA),the most revolutionary medica
The Ni-ultrahigh cathode material is one of the best choices for further increasing energy-density of lithium-ion batteries (LIBs),but they generally suffer from the poor structure stability and rapid capacity fade.Herein,the tungsten and phosphate polyan
Lithium metal batteries (LMBs) are highly considered as promising candidates for next-generation energy storage systems.However,routine electrolytes cannot tolerate the high potential at cathodes and low potential at anodes simultaneously,leading to sever
Rhizopus oryzae lipase (ROL) was immobilized on the surface of silica coated amino modified CoFe2O4 nanoparticles and applied for biodiesel production.The results indicated more affinity of the ROL toward its substrate upon immobilization,as revealed by a
Lithium (Li) metal anodes promise an ultrahigh theoretical energy density and low redox potential,thus being the critical energy material for next-generation batteries.Unfortunately,the formation of Li den-drites in Li metal anodes remarkably hinders the