论文部分内容阅读
在视频监控场景中,由于车辆自身外观的多样性和相似性以及无约束的监控环境,以致很难通过全局外观特征区分不同的车辆目标。与全局外观特征相比较,局部区域特征更具区分能力。同时,为了兼顾算法的速度,本文提出一种基于区域与全局融合特征的以图搜车算法。该算法分为三个阶段:首先,以车辆IDs作为标签信息,训练一个车辆的全局特征网络;其次,加入局部区域特征网络,进而联合训练局部区域特征与全局特征网络;在推理阶段,仅采用全局特征网络的特征计算车辆图像之间的相似度。本文采用视频监控场景的图片作为数据集进行算法测试,结果