论文部分内容阅读
由于函数概念比较抽象,学生对解有关函数记号 的问题感到困难,学好这部分知识,能加深学生對函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下:
一、求表达式:
1.换元法:即用中间变量 表示原自变量 的代数式,从而求出 ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
2.凑合法:在已知 的条件下,把 并凑成以 表示的代数式,再利用代换即可求 .此解法简洁,还能进一步复习代换法。
3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.
5.赋值法:给自变量取特殊值,从而发现规律,求出 的表达式
二、利用函数性质,解 的有关问题
1.判断函数的奇偶性:
2.确定参数的取值范围
一、求表达式:
1.换元法:即用中间变量 表示原自变量 的代数式,从而求出 ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
2.凑合法:在已知 的条件下,把 并凑成以 表示的代数式,再利用代换即可求 .此解法简洁,还能进一步复习代换法。
3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.
5.赋值法:给自变量取特殊值,从而发现规律,求出 的表达式
二、利用函数性质,解 的有关问题
1.判断函数的奇偶性:
2.确定参数的取值范围