论文部分内容阅读
本文提出一种基于量子激励粒子群算法优化支持向量机(SVM)训练参数的新方法。该方法在粒子群优化算法中引入量子论思想,提高了粒子搜索的遍历性,从而避免了陷入局部极值,最终得到SVM的最优参数。仿真实验结果表明,本文提出的基于量子激励的粒子群优化的SVM比传统算法优化的SVM的精度高、收敛速度快。