From hardware store to hospital:a COVID-19-inspired,cost-effective,open-source,in vivo-validated ven

来源 :生物设计与制造(英文版) | 被引量 : 0次 | 上传用户:xamalong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this strain,we have designed and tested the accessible low-barrier in vivo-validated economical ventilator (ALIVE Vent),a COVID-19-inspired,cost-effective,open-source,in vivo-validated solution made from commercially available components.The ALIVE Vent operates using compressed oxygen and air to drive inspiration,while two solenoid valves ensure one-way flow and precise cycle timing.The device was functionally tested and profiled using a variable resistance and compliance artificial lung and validated in anesthetized large animals.Our functional test results revealed its effective operation under a wide variety of ventilation conditions defined by the American Association of Respiratory Care guidelines for ventilator stockpiling.The large animal test showed that our ventilator performed similarly if not better than a standard ventilator in maintaining optimal ventilation status.The FiO2,respiratory rate,inspiratory to expiratory time ratio,positive-end expiratory pressure,and peak inspiratory pressure were successfully maintained within normal,clinically validated ranges,and the animals were recovered without any complications.In regions with limited access to ventilators,the ALIVE Vent can help alleviate shortages,and we have ensured that all used materials are publicly available.While this pandemic has elucidated enormous global inequalities in healthcare,innovative,cost-effective solutions aimed at reducing socio-economic barriers,such as the ALIVE Vent,can help enable access to prompt healthcare and life saving technology on a global scale and beyond COVID-19.
其他文献
设计制作了一套用于气相色谱-质谱(GC-MS)分析极性有机物的在线衍生装置,并将其应用于大气颗粒物样品中极性有机物的检测.将大气颗粒物滤膜样品置于GC-MS进样口,通过使用套针组件,匀速引入气态衍生试剂N-甲基-Ⅳ-(三甲基硅烷)三氟乙酰胺(MSTFA),使其在衬管内于310℃下与待测物接触,10 min即可完成硅烷化在线反应.反应过程中,色谱柱箱保持低温,衍生产物得以在柱头保留,反应完成后色谱柱箱程序升温,使衍生产物直接进行后续分离检测.应用在线衍生装置建立有机酸分析方法,获得了一元酸、二元酸、芳香酸、
Peripheral nerve injury and nerve conduit manufacturingrnThe global nerve injury repair and regeneration market is expected to reach $9.7 billion by 2025,a compound annual growth rate of 9.1% between 2020 and 2025 [1].One com-ponent alone,peripheral nerve
期刊
Sweat,as a biofluid with the potential for noninvasive collection,provides profound insights into human health conditions,because it contains various chemicals and information to be utilized for the monitoring of well-being,stress levels,exercise,and nutr
The fields of regenerative medicine and tissue engineering offer new therapeutic options to restore,maintain or improve tissue function following disease or injury.To maximize the biological function of a tissue-engineered clinical product,specific condit
IntroductionrnDespite the numerous breakthroughs made in medical and biomedical technologies,biosensing underneath the skin without any associated pain still sounds like a dream yet to be realized.rnMinimally invasive biosensors refer to functional or ele
期刊
Since the start of the Precision Medicine Initiative by the United States of America in 2015,interest in personalized medi-cine has grown extensively.In short,personalized medicine is a term that describes medical treatment that is tuned to the individual
The multidisciplinary research field of bioprinting combines additive manufacturing,biology and material sciences to cre-ate bioconstructs with three-dimensional architectures mimicking natural living tissues.The high interest in the possibility of reprod
In the past few decades,robotics research has witnessed an increasingly high interest in miniaturized,intelligent,and inte-grated robots.The imperative component of a robot is the actuator that determines its performance.Although traditional rigid drives
Conductive and transparent dipeptide hydrogels are desirable building blocks to prepare soft electronic devices and wearable biosensors due to their excellent biocompatibility,multi-functionality,and physiochemical properties similar to those of body tiss
Currently,artificial-membrane lungs consist of thousands of hollow fiber membranes where blood flows around the fibers and gas flows inside the fibers,achieving diffusive gas exchange.At both ends of the fibers,the interspaces between the hol-low fiber me