Contrasting patterns of accumulation, partitioning, and remobilization of biomass and phosphorus in

来源 :作物学报(英文版) | 被引量 : 0次 | 上传用户:kruotreo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Maize growth, organ development, and yield formation are highly controlled by the manner in which the plant captures, partition, and remobilizes biomass and phosphorus (P). Better understanding of biomass and P accumulation, partition, and remobilization processes will improve modeling of crop resource use. However, there is still a lack of detailed data to parameterize the modeling of these processes, particularly for modern maize cultivars. A two-year (2016 and 2017) field experiment with three P fertilization treat-ments (0 (P0), 75 (P75), and 300 (P300) kg P2O5 ha 1) was conducted on a Fluvo-aquic soil (Quzhou, Hebei province, China) to collect data and quantify key processes for a representative modern maize cul-tivar (Zhengdan 958) widely grown in China. The proportions of biomass and P partitioned into various maize organs were unaffected by P application rate. Zhengdan 958 showed a much lower leaf-senescence rate than older cultivars, resulting in post-silking leaf photosynthesis being sufficient to meet grain bio-mass demand. In contrast, 50%–85%of leaf P and 15%–50%of stem P accumulated pre-silking were remo-bilized into grain, in spite of the large proportion of post-silking P uptake. Our results are consistent with the theory that plants use resources according to the priority order of re-allocation from senescence fol-lowed by assimilation and uptake, with the re-translocation of reserves last. The results also enabled us to estimate the threshold P concentrations of Zhengdan 958 for modeling crop P demand. The critical leaf P concentration for individual leaves was 0.25%–0.30%, with a corresponding specific leaf P (SLP) of 75–100 mg P m 2. The structural P concentration for leaf was 0.01%, corresponding to an SLP of 3.8 mg P m 2. The maximum P concentrations of leaves and stems were 0.33%and 0.29%. The residual P concen-tration for stems was 0.006%.
其他文献
Reproductive stage frost poses a major constraint for wheat production in countries such as Australia. However, little progress has been made in identifying key genes to overcome the constraint. In the pre-sent study, a severe frost event hit two large-sc
MicroRNAs (miRNAs) act as regulators of plant development and multiple stress responses. Here we demonstrate that the rice miR171b-SCL6-IIs module regulates the balance between blast resistance, grain yield, and flowering. miR171b-overexpressing rice plan
Elevated levels of atmospheric CO2 (eCO2) promote rice growth and increase methane (CH4) emissions from rice paddies, because increased input of plant photosynthate to soil stimulates methanogenic archae. However, temporal trends in the effects of eCO2 on
Brassinosteroids (BRs) are steroid hormones that function in plant growth and development and response to environmental stresses and nutrient supplies. However, few studies have investigated the effect of BRs in modulating the physiological response to ni
The gluten proteins of wheat grain are responsible for visco-elastic properties of flour, but they also trig-ger the immune-response of celiac disease. In this work, two low-gliadin RNA interference (RNAi) wheat lines that differ for the promoter driving
The content and composition of wheat storage proteins are the major determinants of dough rheological properties and breadmaking quality and are influenced by cultivation conditions. This study aimed to investigate the effects of water deficit and high N-
Tiller angle (TA) strongly influences plant architecture and grain yield in cereals. However, the genetic basis of TA in wheat is largely unknown. We identified three TA-related quantitative trait loci (QTL). One of them was QTa.sau-2B-769, a major QTL lo
The main defense response to Soybean mosaic virus (SMV) infection in soybean [Glycine max (L.) Merr.] is thought to be blockage of intercellular virus transport by callose deposition on plasmodesmata. But the specific regulatory mechanism remains largely
The Green Revolution gene sd1 has been used extensively in modern rice breeding, especially in indica cultivars. However, elite sd1 alleles and related germplasm resources used for japonica rice breeding have not been identified, and extensive efforts are
Oil and protein content and fatty acid composition are quality traits in peanut. Elucidating the genetic mechanisms underlying these traits may help researchers to obtain improved cultivars by molecular breeding. Whole-genome resequencing of a recombinant