论文部分内容阅读
In order to research the influence of coal-rock mass morphology of mining space on the flow law of gas,the laboratory physical model and numerical computation methods were adopted to simulate coal mining activities.The simulation results indicate that,after coal seam mining,the loose rock accumulation body of free caving,ordered rock arrangement body of plate damage rich in longitudinal and transverse fractures and horizontal fissure body formed by rock mass deformation imbalance are formed from bottom to top in the mining space.For these three types of accumulation bodies,there are essential differences in the accumulation state,rock size and gas breakover characteristics.According to this,the coal-rock mass in the mining space is classified into gas turbulence channel area,gas transitional flow channel area and gas seepage channel area.In the turbulence channel area,the gas is distributed transversely and longitudinally and gas diffuses in the form of convection with Reynolds number R_e more than100;in the transitional flow channel area,one-way or two-way gas channels are crisscross and gas is of transitional flow regime with R,.between 10 and 100.In the seepage channel area,there are a few vertical gas channels with R,.less than 10.In this paper,the researches on the gas orientation method in different partitions were further carried out,gas orientation methods of low-level pipe burying,middle-level interception and high-level extraction were determined and an on-site industrial test was conducted,achieving the effective diversion of gas and verifying the reasonableness of gas channel partition.
In order to research the influence of coal-rock mass morphology of mining space on the flow law of gas, the laboratory physical model and numerical computation methods were adopted to simulate coal mining activities. The simulation results that that, after coal seam mining, the loose rock accumulation body of free caving, ordered rock arrangement body of plate damage rich in longitudinal and transverse fractures and horizontal fissure body formed by rock mass deformation imbalance are formed from bottom to top in the mining space. For these three types of accumulation bodies, there are essential differences in the accumulation state, rock size and gas breakover characteristics. According to this, the coal-rock mass in the mining space is classified into gas turbulence channel area, gas transitional flow channel area and gas seepage channel area. the turbulence channel area, the gas is distributed transversely and longitudinally and gas diffuses in the form of convection with Reynolds number R_e more than 100; in the transitional flow channel area, one-way or two-way gas channels are crisscross and gas is of transitional flow regime with R, .between 10 and 100. In the seepage channel area, there are a few vertical gas channels with R, .less than 10.In this paper, the researches on the gas orientation method in different partitions were carried out, gas orientation methods of low-level pipe burying, middle-level interception and high-level extraction were determined and an on-site industrial test was conducted, achieving the effective diversion of gas and verifying the reasonableness of gas channel partition.