Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-dou

来源 :能源化学 | 被引量 : 0次 | 上传用户:airbike
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Self-discharge is a significant issue in electric double layer energy storage,which leads to a rapid voltage drop and low energy efficiency.Here,we attempt to solve this problem by changing the structure of the electric double layer into a de-solvated state,by constructing a nano-scale and ion-conductive solid electrolyte layer on the surface of a carbon electrode.The ion concentration gradient and potential field that drive the self-discharge are greatly restricted inside this electric double layer.Based on this understanding,a high-efficiency graphene-based lithium ion capacitor was built up,in which the self-discharge rate is reduced by 50% and the energy efficiency is doubled.The capacitor also has a high energy density,high power output and long life,and shows promise for practical applications.
其他文献
The increase in natural gas reserves makes methane a significant hydrocarbon feedstock.However,the direct catalytic conversion of methane into liquid fuels and useful chemicals remains a great challenge,and many studies have been devoted to this field in
Direct methanol fuel cells (DMFCs) are very promising power source for stationary and portable miniature electric appliances due to its high efficiency and low emissions of pollutants.As the key material,catalysts for both cathode and anode face several p
Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades,because of high overall abundance of precursors,their even geographical distribution,and low cost.Na3V2(PO4)3 (NVP),a typical sodium super ion conductor (NASICON)-based el
Numerous fabrication methods have been developed for high-efficiency perovskite solar cells (PSCs).However,these are limited to spin-coating processes in a glove box and are yet to be commercialized.Therefore,there is a need to develop a controllable and
Organic carbonyl compounds are considered as promising candidates for lithium batteries due to their high capacity and environmental friendliness.However,they suffer from serious dissolution in the electrolyte,leading to fast capacity decay.Here we report
To design the high-energy-density Li-ion batteries,the anode materials with high specific capacity have attracted much attention.In this work,we adopt the first principles calculations to investigate the possibility of a new two dimensional boron material
LiNi0.8Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3.H2O and EDTA are used as two chelating agents.The obtained LiNi0,8Co0J5Al0.05O2 material has well-defined layered structure and uniform e
Porous core-shell CoMn2O4 microspheres of ca.3-5 μm in diameter were synthesized and served as anode of lithium ion battery.Results demonstrate that the as-synthesized CoMn2O4 materials exhibit excellent electrochemical properties.The CoMn2O4 anode can de
Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellent conductivity,stable physicochemicai properties,easy processability,controllable porosity and low price.Herein,we reported a novel well-designed hierarchic
Methyl formate is one of the most important intermediates in C1 chemistry,which has been employed in a wide range of industrial applications.Current synthesis methods for methyl formate mainly include esterification of methanol and formic acid,liquid-phas