论文部分内容阅读
By using the long-term observed hydro-meteorological data (1985-2002) from the Tropical Atmosphere Ocean System (TAO) during the international Tropical Ocean and Global Atmosphere (TOGA) experiment, the key parameters of the Sea Surface Temperature (SST), thermocline depth, surface sensible heat flux and latent heat flux, and the pseudo wind stress in the Westen Equatorial Ocean are calculated in this paper. On the basis of the calculation, the response of upper layer heat structure in the Westen Pacific Warm Pool to the mean Madden-Julian Oscillation (MJO) and its relation to the El Nio events are analyzed. The results show that within the MJO frequency band (42-108 d), the distributions of sea surface wind stress and upper ocean temperature have several spatial-temporal variation structures. Among these structures, the type-I surface pseudo wind stress field plays the role of inhibiting the eastward transport of ocean heat capacity, while the type-II strengthens the heat capacity spreading eastward. Therefore the type-II surface pseudo wind stress field is the characteristic wind field that provokes El Nio events. During calm periods (July-September) of the wind stress variations, the sensible and latent heat capacity fluxes change considerably, mostly in the region between 137°-140°E, while to the east of 150°E, the heat capacity flux changes less. In the mean MJO state, the type-I surface pseudo wind stress field structure dominates in the Western Pacific. This is why El Nio events can not occur every year. However, when the type-II and type-III surface pseudo wind stress field structures are dominant, an El Nio event is likely to occur. In this case, if the heat capacity of the Western Pacific Warm Pool is transported eastward and combined with the Equatorial Pacific heat capacity spreading eastward, El Nio events will soon occur.
By using the long-term observed hydro-meteorological data (1985-2002) from the Tropical Atmosphere Ocean System (TAO) during the international Tropical Ocean and Global Atmosphere (TOGA) experiment, the key parameters of the Sea Surface Temperature (SST) thermocline depth, surface sensible heat flux and latent heat flux, and the pseudo wind stress in the Westen Equatorial Ocean are calculated in this paper. On the basis of the calculation, the response of upper layer heat structure in the Westen Pacific Warm Pool to the mean Madden-Julian Oscillation (MJO) and its relation to the El Nio events are analyzed. The results show that within the MJO frequency band (42-108 d), the distributions of sea surface wind stress and upper ocean temperature have several spatial- temporal variation structures. Among these structures, the type-I surface pseudo wind stress field plays the role of inhibiting the eastward transport of ocean heat capacity, while the type-II strengthens the heat capacity spr eve eastward. The type-II surface pseudo wind stress field is the characteristic wind field that provokes El Nio events. During calm periods (July-September) of the wind stress variations, the sensible and latent heat capacity fluxes change considerably, mostly in the region between 137 ° -140 ° E, while to the east of 150 ° E, the heat capacity flux changes less. In the mean MJO state, the type-I surface pseudo wind stress field structure dominates in the Western Pacific. This is why El Nio events can not occur every year. However, when the type-II and type-III surface pseudo wind stress field structures are dominant, an El Nio events is likely to occur. the Western Pacific Warm Pool is not eastward and combined with the Equatorial Pacific heat capacity spreading eastward, El Nio events will soon occur.