论文部分内容阅读
The authors demonstrate that the El Ni o events in the pre-and post-1976 periods show two ampli-tude-duration relations. One is that the stronger El Ni o events have longer durations, which is robust for the moderate El Ni o events; the other is that the stronger El Ni o events have shorter durations but for strong El Nio events. By estimating the sign and amplitude of the nonlinear dynamical heating (NDH) anomalies, the authors illustrate that the NDH anomalies are negligible for moderate El Nio events but large for strong El Nio events. In particular, the large NDH anomalies for strong El Nio events are positive during the growth and mature phases, which favor warmer El Nio events. During the decay phase, however, the negative NDH anomalies start to arise and become increasingly significant with the evolution of the El Nio events, in which the negative NDH anomalies dampen the sea surface temperature anomalies (SSTA) and cause the El Nio events to reach the SST normal state earlier. This pattern suggests that the nonlinearity tends to increase the intensities of strong El Nio events and shorten their duration, which, together with the previous results showing a positive correlation between the strength of El Nio events and the significance of the effect of nonlinear advection on the events (especially the suppression of nonlinearity on the SSTA during the decay phase), shows that the strong El Nio events tend to have the amplitude-duration relation of the stronger El Nio events with shorter durations. This result also lends support to the assertion that moderate El Nio events possess the amplitude-duration relation of stronger El Nio events with longer durations.
The authors demonstrate that the El Ni o events in the pre-and post-1976 periods show two ampli-tude-duration relations. One is the stronger stronger El Ni o events have longer durations, which is robust for the moderate El Niñ events ; the other is that the stronger El Ni o events have shorter durations but for strong El Nio events. By estimating the sign and amplitude of the nonlinear dynamical heating (NDH) anomalies, the authors illustrate that the NDH anomalies are negligible for moderate El Nio events but large for strong El Nio events. In particular, the large NDH anomalies for strong El Nio events are positive during the growth and mature phases, which favor warmer El Nio events. During the decay phase, however, the negative NDH anomalies start to arise and become increasingly with the evolution of the El Nio events, in which the negative NDH anomalies dampen the sea surface temperature anomalies (SSTA) and cause the El Nio events to reach the SST n ormal state earlier. This pattern suggests that the nonlinearity tends to increase the intensities of strong El Nio events and shorten their duration, which, together with the previous results showing a positive correlation between the strength of El Nio events and the significance of the effect of nonlinear advection on the events (especially the suppression of nonlinearity on the SSTA during the decay phase), shows that the strong El Nio events tend to have the amplitude-duration relation of the stronger El Nio events with This result also lends support to the assertion that moderate El Nio events possess the amplitude-duration relation of stronger El Nio events with longer durations.