论文部分内容阅读
The results of time series sediment trap experiments in the South China Sea show that particulate organic carbon (POC) fluxes are influenced by the monsoons. The increase of productivity in the northern South China Sea is mainly due to northeast monsoon while in the central South China Sea the influence of southwest monsoon becomes more prominent. The annual primary production and export production calculated based on POC fluxes are 53 0-63 4 and 10 32-12 93 gC·m -2·a -1, respectively. The enhancement of POC flux during monsoon period suggest that higher palaeoproductivity or organic carbon accumulation rate in glacial age in the South China Sea might be the result of strengthening of the monsoons.
The results of time series sediment trap experiments in the South China Sea show that particulate organic carbon (POC) fluxes are influenced by the monsoons. The increase of productivity in the northern South China Sea is mainly due to northeast monsoon while in the central South China The annual primary production and export production calculated based on POC fluxes are 53 0-63 4 and 10 32-12 93 gC · m -2 · a -1, respectively. The enhancement of POC flux during monsoon period suggest that higher palaeoproductivity or organic carbon accumulation rate in glacial age in the South China Sea might be the result of strengthening of the monsoons.