论文部分内容阅读
开采沉陷预计是矿山开采研究领域的核心和难点之一,它对开采沉陷的理论研究和生产实践都有重要的意义。本文以进行沉陷预计为目的,提出建立基于各影响因素数据序列思想,其主要步骤为首先建立影响因素序列;其次利用灰色理论对建立的数据序列进行预处理;最后构建基于数据预处理条件下的BP神经网络预测模型(AGO-BP模型),以用于矿区沉陷预报。通过对几组实例本文对建立的模型进行了多次反复预测实验,预测结果证实该模型预测精度较高,在工程上具有一定的应用价值。