论文部分内容阅读
吸收系数是水体的固有光学参数,是进行水体光学遥感研究的基础。讨论了一种基于人工神经网络(artifi-cial neural networks,ANN)、利用遥感反射比数据反演水体吸收系数的方法。该方法用实测的水体遥感反射比(Rrs)数据集建立BP神经网络,用以反演水体在波长440 nm处的吸收系数(α(440))。实测遥感反射比数据集的80%数据用于训练样本,20%数据用于预测样本。研究结果表明:正确选择神经网络的传递函数、训练函数和隐含层节点个数是至关重要的;用最优的传递函数、训练函数和隐含层节