论文部分内容阅读
针对传统的CF(Collaborative Filtering)算法和基于项目评分的CF算法中存在的数据稀疏、扩展性及计算效率低的问题,通过引用评价系数,对其相似性计算和推荐集的选取方法进行了改进,提出了一种改进的基于相关相似性的CF算法,产生更为准确的用户兴趣度预测,从而提高系统推荐的质量与推荐效率。对改进算法进行实验和性能对比与评价的结果表明,改进算法与传统算法相比,能显著提高推荐精度,平均绝对误差(MAE:Mean Absolute Error)为0.53~0.77。