面向机翼装配序列规划的蚁群算法

来源 :信息技术与信息化 | 被引量 : 0次 | 上传用户:lgwll
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对产品装配序列规划问题,提出了一种基于蚁群算法的装配序列规划方法。通过充分研究装配过程中的几何约束关系以及机械产品装配专业知识和人工装配经验,总结飞机机翼装配规则,结合蚁群算法建立了算法模型,并依次设计状态转移函数和信息素更新函数,设置合理的参数,在蚁群寻优过程中加入零部件筛选规则辅助蚁群选择最优解,最终获得优化装配序列,并以飞机机翼模型为实例,对该算法模型的可行性和准确性进行验证。
其他文献
为解决大规模动态图形显示系统中三维图形渲染方法普遍存在冗余渲染、CPU/GPU计算性能瓶颈等技术问题,提出了基于相似性特征提取的三维图形渲染优化方法对其改进,并使用了当前比较流行的几种图形批次合并渲染技术,在第三方开源二三维显示平台中进行了验证和调优。同时针对大容量态势系统中传统CPU目标拾取方法卡顿问题,提出了基于图形硬件等目标拾取方法。经过数据分析和比较,得出了大规模复杂场景下图形渲染和拾取的
针对计算机图形学中虚拟云的建模技术进行概述,介绍了基于物理的形状模拟技术和基于个体生长的形状模拟技术。从云的形状模拟、动态模拟两方面对近二十年建模技术进行分类,介绍典型算法的基本原理和优缺点,侧重分析促进虚拟云建模自动化、交互性的基于图像、草图的模拟方法,对部分具有代表性的模拟方法进行比较与总结,讨论现有工作所存在的问题,进一步展望今后研究方向,以期为研究云景可视化技术提供借鉴。
现阶段,随着我国社会经济的不断发展,社会对木制品的要求也越来越高,这给林业发展与林业相关企业带来一定影响,同时也带来机遇与挑战。一方面社会需要大量林业资源来保持经济稳定发展,林业企业在满足社会需求的同时,更应该对过度采伐自然资源给生态环境带来的影响引起重视。为此,需要在不破坏生态环境的前提下,通过可持续发展的战略来对林业进行有效管理,保护自然资源。
全面准确掌握辖区林下资源状况、分布特点,对完善林区产业发展布局、科学制定林下资源开发利用规划、促进林业经济发展,具有非常重要的意义。本文对黑茶山林区林下资源现状概况进行详细介绍,并对林下资源开发利用提出建议。
为更好地了解基于深度学习的Android恶意应用检测领域的研究现状,对该领域现有的研究工作进行了综述。首先介绍了Android恶意应用检测技术的发展以及主要方法,然后阐述了四种主流深度神经网络的基本原理,并从网络结构、特征工程和应用效果等方面对深度神经网络在Android恶意应用检测中的应用现状进行了总结,最后对基于深度学习的Android恶意应用检测技术的未来研究方向进行了展望。可以看到,引入深度学习的Android恶意应用检测技术具有明显的优势,但也存在需要进一步改进的问题,如模型的鲁棒性、可解释性等
目前,林业调查规划设计工作已成为林业建设的重点工作,但从我国林业调查规划设计的现状来看,存在的问题比较多,如缺乏完善的监管体制、技术方式陈旧以及人才短缺等问题,造成林业调查规划设计的质量偏低,因此,需要制定相应的策略提升林业调查规划设计质量,从而发挥林业调查规划设计的作用,促进林业实现可持续发展。本文将通过实际案例探讨当前林业调查规划设计方面存在的问题,并针对这些实际问题提出具体的质保策略。
针对互联网中恶意域名攻击事件频发,缺乏对恶意域名的有效检测、分析并形成网络态势研判及预警。通过分析DNS日志挖掘信息,在传统黑名单检测的基础上,采用基于LSTM(长短期记忆)神经网络的方法来识别DGA恶意域名,并通过大量域名数据对模型进行训练优化,检测网络中存在的APT攻击、网络钓鱼和木马等恶意攻击事件。结果表明:与传统方法相比更加实时、高效、准确,进而快速分析网络态势情况,做到及时预警。
面向LR-WPANs的IEEE 802.15.4协议具有远距离的特性,面向WBAN的IEEE 802.15.6协议具有高速率的特性。针对复杂应用场景下对通信距离和通信速率的不同要求,在考虑两个特性的基础上提出双协议数字基带系统,使用Verilog语言编程,完成物理层(physical,PHY)和媒体访问控制层(medium access control,MAC)的设计与仿真,以Xilinx的Zynq系列FPGA开发板进行验证。实验结果表明,系统实现有效载荷大小为8 bytes的数据传输,通信协议可灵活切换
针对传统集热控制系统中温度控制精度低,具有较大滞后等问题,提出了一种基于双模糊控制算法的集热系统。从控制原理出发,通过前端温度传感器采集温度信息与设定温度值进行对比,经过对比后得出误差反馈值,双模糊控制器会根据此反馈值执行一系列既定的命令,通过不断地系统运行调节,最终达到用户预期值。通过Matlab软件中的Simulink部分建立集热仿真模型并进行仿真。结果显示,基于双模糊控制的集热控制系统,响应速度快、超调量小、稳定性好。
为了解决当前缺乏基于IPv6的网络日志数据分析系统,设计并实现了基于IPv6的网络日志数据分析系统,方便运维人员对系统的维护和网络流量的监控。系统首先使用TShark捕获区域内的数据包;然后将捕获的数据包采用Python解析,使用Highcharts记录实时网络流量变化。运维人员还可设置报警值,当数据包的数量超过报警值时,系统会弹出报警信息。另外,系统采用matplotlib库可视化地表现出指定时间段内的网络日志的情况,便于运维人员分析网络的运行情况并做出相应调节措施。