论文部分内容阅读
针对现有K均值聚类(KMC)算法在选取初始聚类中心时随机性较大、全局搜索能力差、聚类精度低等问题,提出了一种引入改进飞蛾扑火的K均值交叉迭代聚类(IMFO-KMC)算法。利用最大最小距离积法初始化聚类中心,避免了KMC算法对随机初始聚类中心较为敏感的问题;利用样条插值预测的思想改进飞蛾扑火算法,提高了算法的收敛速度及寻优精度;以类内平均距离为适应度函数,引导插值扑火算法优化KMC迭代过程中的聚类中心,提高了聚类精度。将IMFOKMC与KMC、K-means++算法、模糊c均值聚类算法在国际标准数据集Iri