【摘 要】
:
近年来,分布式光伏站点数量迅速增长,频发的支路异常带来了巨大的发电效能损失,也产生了如何精准且高效检测多站支路异常的需求。为解决上述问题,本文提出了基于多站支路功率联合学习的分布式光伏支路异常检测方法。该方法通过多个光伏站支路异常检测任务联合学习的方式,提取了辨识多站支路异常特征的相似性和差异性表示;通过构建的多尺度卷积神经网络有效捕捉了多站支路功率中存在的差异性异常特征;利用辅助任务充分学习多站
论文部分内容阅读
近年来,分布式光伏站点数量迅速增长,频发的支路异常带来了巨大的发电效能损失,也产生了如何精准且高效检测多站支路异常的需求。为解决上述问题,本文提出了基于多站支路功率联合学习的分布式光伏支路异常检测方法。该方法通过多个光伏站支路异常检测任务联合学习的方式,提取了辨识多站支路异常特征的相似性和差异性表示;通过构建的多尺度卷积神经网络有效捕捉了多站支路功率中存在的差异性异常特征;利用辅助任务充分学习多站支路异常辨识特征的相似表示;采用多阶段训练策略减少辅助任务对多站支路异常检测精度的消极影响。最后,本文通
其他文献
为了研究激光相干阵列在全大气层湍流中的成像能力,在全相位闭合等方法的基础上,利用HV57模型中的大气折射率结构常数来标定大气相干长度,通过当地风速和光路高度等参数计算了实验所在地等效整层大气湍流的水平传输距离,研制了Ф1.5 m等效孔径的激光相干发射阵列,对1.2 km远处物体进行了成像实验,成像分辨率达到了亚角秒级。验证了激光相干阵列成像系统对大气湍流影响的抑制作用和成像能力,可为未来研制实体激
以ETM~(+)、SPOT5、Quickbird为主要信息源,在哈拉阿拉特山地区开展1:5万区域地质填图,对该地区的地层单元、中小规模地质体如岩脉、小岩体、火山口和地质构造特征进行了详细地遥感解译分析,开展了大量的遥感野外地质调查验证。结果表明,采用彩色空间HSV变换融合法将SPOT5高精度遥感图像数据与ETM~(+)图像数据融合,保持了波谱信息的一致性;选择主成分PC1、2、3之SPOT5 1~
针对传统方法无法高效、无损地对柑橘浮皮和枯水进行检测的问题,本研究自制了一套软X射线成像装置,包括载物传送装置、软X射线成像装置、触发装置和软X射线防护装置。本研究根据宽皮柑橘物理特性确定检测参数,以柑橘图像的清晰度、对比度、畸变率为评判标准,通过调节成像装置参数,确定了最佳的成像参数为:X射线源的管电压60 kV,管电流1.3 mA,线阵探测器的积分时间5.5 ms,柑橘输送带的传送速度10 c
采用多期高分2号(GF-2)GF-2和Landsat ETM+/OLI遥感影像,应用遥感技术和GIS空间分析方法,探讨分析中小尺度城市的地域空间演化特征。研究结果表明,2000—2019年间,运城市盐湖区城市地域空间不断扩大,前期以量的扩张为主,后期转变为质的填充;城市主要向北部扩展,发展较快的方向为40°~60°和110°~130°;盐湖区城市地域演化总体呈现出“合理—不合理—合理”的发展模式;
针对苹果叶片图像中小尺度病斑和复杂背景带来的病斑目标难以精确定位和识别的问题,以苹果的斑点落叶病、黑星病、灰斑病、雪松锈病和花叶病为研究对象,提出一种基于改进Faster R-CNN的苹果叶片病害识别方法。先通过数据增广操作对训练集数据进行扩充以增强模型鲁棒性,再通过对增广训练集图像进行训练来得到一个可靠的病害识别模型。改进后的模型使用拆分注意力网络(ResNest)作为骨干特征提取网络,使模型更
针对体育视频动作识别方法正确率较低的问题,提出了一种结合融合不变性特征与混合核方法的体育视频动作识别方法.采用高斯混合模型构建不变性特征,并对特征进行降维.采用混合核方法分别完成局部特征与全局特征的分类.标准体育动作数据集上的实验结果表明,降维后的融合不变性特征能够保留体育动作关键信息,与混合核方法配合密切,该方法既能够显著提升识别性能,也能够提升识别效率.该方法可以构建实时、在线的体育视频动作识
相比于香农采样所需的大规模样本,压缩采样在视频信号的高能效表征方面具有独特优势。当关键帧采样率与非关键帧采样率不一致时,现有的帧间片匹配算法在多种联合采样率下呈现出不稳定的重建质量。为了充分利用帧间的相关性进行视频压缩感知重构,本文提出了一种采样率自适应的帧间片匹配重构算法,根据关键帧采样率与非关键帧采样率的相对变化执行差异化的帧间片匹配,以更好地适配不同联合采样率生成的视频码流。所提算法首先对各
遥感图像由于包含的地物尺度差别大、地物边界复杂等原因,造成准确提取遥感图像特征具有一定难度,精确分割遥感图像比较困难,针对这一问题,提出了一种编码-解码器的AFU-Net网络。在U-Net基础上使用一个自下而上、自上而下的结构,并引入密集跳跃连接得到融合不同层次的多尺度特征。使用非对称卷积块强化水平和垂直方向的平方卷积核,并采用残差单元加深网络深度。利用FReLU激活函数提升网络解析能力,从而提高
针对网络模型执行过程耗时过长的问题,受到像素切割网络架构中的编解码结构启发,设计了一种高效的轻量级主干网络,使用深度可分离卷积作为基本的卷积模块,利用了多维自学习模块(Multidimensional Self-Learning Module,MSLM)对特征矩阵进行自适应的学习来增强有用信息权重,同时使用编解码结构对其主干结构进行效率上的优化,设计出了深度可分离网络(Codec Depth Se
针对在用短波红外显微镜观测目标时,目标的尺寸往往会受到镜头景深限制的问题,提出一种多聚焦融合的方法,可有效扩展显微镜成像的景深。通过改变物距获得大量不同聚焦平面的图像,利用多尺度和局域加权方差来量化区域清晰度,获得焦平面掩膜,之后采用形态学方法优化掩膜边界,最终加权融合焦平面区域得到细节完备的目标整体图。实验中利用景深为10 μm左右的显微镜镜头得到了纵向尺寸为几百微米目标的高质量图像。实验结果表